Понедельник, 20.11.2017, 08:51
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ЧИСЛОВАЯ СИМВОЛИКА СРЕДНЕВЕКОВЬЯ [9]
ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА [38]
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Главная » Файлы » ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ » ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА

Геометрия налогов
06.05.2016, 21:05
Корни достижений греков уходят в древние цивилизации Вавилона и Египта. Йейтс писал о вавилонском равнодушии — особенности, из-за которой вавилонянам не удалось достичь величия в математике. До греков человечество приметило немало хитрых формул, расчетных и инженерных фокусов, однако — в точности как наши политики — люди временами добивались поразительных успехов с феноменально малым разумением, что же они вообще сделали. А им-то что? Они были строителями, что работают впотьмах на ощупь — что-то возводят, где-то укладывают ступени и достигают своих целей, но не понимания.

И не они первые. Люди считали и вычисляли, драли налоги и облапошивали друг друга с незапамятных времен. Некоторые предположительно счетные орудия датируются 30 000 лет до н. э. — всего лишь палки, расписанные художниками с интуитивным математическим чутьем. Но есть и поразительно отличные приспособления. На берегах озера Эдвард (ныне Демократическая Республика Конго) археологи выкопали небольшую кость 8000-летней давности с крошечным кусочком кварца, вделанным в углубление на одном конце. Автор этого приспособления — художник или математик, мы никогда уже не узнаем, — вырезал на кости три колонки насечек. Ученые считают, что эта кость, названная костью Ишанго, — возможно, самый древний из найденных прибор для численной записи.

Мысль об осуществлении операций с числами доходила гораздо медленнее, поскольку занятия арифметикой подразумевают некоторую степень абстракции. Антропологи сообщают: если два охотника выпустили две стрелы, завалили двух газелей и заработали две грыжи, волоча добычу к стоянке, во многих племенах все эти «два» и «две» могли быть разными понятиями в каждом случае. В таких цивилизациях нельзя было складывать яблоки с апельсинами. Похоже, на понимание того, что все это частные случаи одного и того же понятия — абстрактного числа 2, — потребовались тысячи лет.

Первые серьезные шаги в этом постижении люди предприняли в шестом тысячелетии до н. э., когда жители долины Нила постепенно отказались от кочевой жизни и принялись культивировать земли в долине  . Пустыни Северной Африки — едва ли не самые сухие и бесплодные в мире. И лишь река Нил, набухая от экваториальных дождей и тающих снегов Абиссинского нагорья, могла принести, подобно богу, жизнь и пропитание в пустыню. В древние времена каждый год в середине июня сухая, безрадостная и пыльная долина Нила чуяла, как могучие воды устремляются в русло реки, занося плодородным илом округу. Задолго до греческого классика Геродота, описавшего Египет как «дар Нила», Рамзес III оставил запись, указывающую на то, как египтяне почитали этого бога, Нил: они называли его Хапи и подносили ему мед, вино, золото и бирюзу — все самое ценное. Само название страны — Египет — означает на коптском «черная земля».


* * *

Ежегодное затопление долины продолжалось четыре месяца. К октябрю река начинала мелеть и чахнуть, пока земля к следующему лету не высыхала до корки. Восемь засушливых месяцев делились на два сезона: возделывания почв, перит, и сбора урожая, шему. У египтян возникли оседлые общины, располагавшиеся на холмах, которые в периоды затопления превращались в островки, соединенные дамбами. Египтяне создали систему орошения и хранения зерна. Сельское хозяйство стало основой египетского календаря и самой жизни, а его главными продуктами — хлеб и пиво. К 3500 году до н. э. египтяне развили кое-какое производство — ремесла и металлургию. Примерно тогда же они разработали и письменность.

Смерть для египтян всегда была неизбежностью, но с достатком и оседлостью неизбежными стали и налоги. Вероятно, именно они первыми потребовали развития геометрии: хоть фараон и владел, в принципе, всеми землями и богатствами, на самом деле частная собственность была и у храмов, и у отдельных частных лиц. Власти оценивали размеры налогов по высоте подъема воды в текущем году и размерам частных владений. Тех, кто отказывался платить, тогдашняя полиция могла уговорить силой, не сходя с места. Займы существовали, но интерес закладывали по принципу «чем проще, тем лучше»: 100 % годовых. Поскольку средства на кону стояли нешуточные, египтяне выработали более-менее надежные, хоть и мучительные методики расчетов площадей квадрата, прямоугольника и трапеции. Для вычисления площади круга его аппроксимировали квадратом со сторонами, равными восьми девятым диаметра. Это примерно то же самое, что 256/81 — или 3,16 — для значения числа , т. е. завышенная его оценка — правда, всего на 0,6 %. История не сохранила свидетельств, бурчали налогоплательщики по поводу такой несправедливости или нет.

Египтяне применяли свои математические знания с поразительным размахом. Вообразите открытую всем ветрам унылую пустыню в 2580 году до н. э. Архитектор разложил свои папирусы с планом заказанной вами постройки. У него-то работа непыльная: квадратное основание, треугольные грани, ну и да — 480 футов в высоту, из каменных глыб по две с лишним тонны каждая. Вам поручили проследить за строительством. Простите-извините, но никаких лазерных дальномеров и прочих затейливых маркшейдерских приборов нету — кое-какие палки да веревки.

Многие домовладельцы знают: разметка земли под фундамент здания или даже периметра под простенькую террасу при помощи лишь плотницкого угольника и рулетки — задачка непростая. При постройке же такой пирамиды малейшее отклонение от правильных углов — и тысячи тонн камней тысячи человеко-лет спустя в сотнях футов над землей примут форму не строгих треугольных граней пирамиды, сходящихся в одной точке, а шаткой четырехглавой кучи. А фараоны, коим поклонялись как богам, с армиями, резавшими фаллосы убитым врагам просто для точности подсчетов, — совсем не те всесильные божества, которым стоит предъявлять кособокие пирамиды. Прикладная египетская геометрия развилась в полноценный предмет.

Чтобы строительство шло по плану, египтяне подключали специалиста, называвшегося гарпедонаптом, буквально — «натягивателем веревок». Возиться с веревкой гарпедонапт привлекал трех рабов. На ней с определенными интервалами были завязаны узлы, и если ее туго натянуть, получался треугольник с узлами-вершинами и сторонами известной длины — и, соответственно, углами нужного раствора. Например, если натянуть веревку с узлами на 30-м, 40-м и 50-м ярдах, между сторонами в 30 и 40 ярдов получится прямой угол. (Слово «гипотенуза» по-гречески исходно означала «растянутая напротив».) Метод, как выяснилось, блестящий — и куда сложнее, чем может показаться. В наше время сказали бы, что натягиватели веревок строили не линии, а геодезические кривые вдоль поверхности Земли. Нам предстоит убедиться, что именно этим методом — хоть и не в таком умозрительном виде и не в таких малых (бесконечно малых, говоря строго) масштабах — мы и поныне пользуемся для оценки локальных свойств пространства в той области математики, что зовется «дифференциальная геометрия». Именно теоремой Пифагора мы поверяем плоскость пространства.

Покуда египтяне обживали долину Нила, в районе Персидского залива и Палестины развивалась еще одна конурбация. Все началось в Месопотамии — области между реками Тигр и Евфрат — в четвертом тысячелетии до н. э. Где-то в промежутке от 2000 до 1700 года до н. э. несемитские племена, обитавшие к северу от Персидского залива, завоевали своих южных соседей. Их победоносный владыка Хаммурапи назвал объединенное царство по имени своего города — Вавилона. Вавилонян мы и считаем создателями математической системы, что гораздо сложнее египетской.

Инопланетяне, глядящие на Землю в какой-нибудь сверхтелескоп с расстояния в 23 400 000 000 000 000 миль, и сегодня могут наблюдать жизнь и привычки вавилонян и египтян. Для нас же, застрявших на этой планете, собрать полную картину той жизни будет потруднее. О египетской математике мы знаем в основном из двух источников — из «Папируса Ринда», названного в честь Александра Г. Ринда, передавшего этот документ в Британский музей, и из «Московского папируса», находящегося в Музее изобразительных искусств в Москве. Наши знания о вавилонянах происходят из раскопок руин в Ниневии, где обнаружили около 1500 табличек. К сожалению, ни на одной не нашлось математических текстов. Зато несколько сотен глиняных табличек удалось накопать в Ассирии — в основном на руинах Ниппура и Киша. Если сравнивать археологические раскопки с поисками в книжном магазине, на сей раз отдел математики в нем обнаружился. Археологи нашли справочные таблицы, учебники и другие объекты, поведавшие многое о вавилонской математической мысли.

Стало известно, к примеру, что функции вавилонского эквивалента инженера не сводились к мобилизации рабочей силы для стройки. Чтобы вырыть, допустим, канал, этот специалист размечал его трапециевидное сечение, рассчитывал объем земли, который необходимо вынуть, прикидывал, сколько один человек прокопает за день, и выдавал количество человекодней, необходимое для осуществления замысла. Вавилонские ростовщики умели даже вычислять сложный процент доходности.

Вавилоняне уравнений писать не умели. Все их расчеты выражались словесными задачами. Например, одна из табличек содержала восхитительный текст: «Четыре есть длина и пять есть диагональ. Какова ширина? Размер ее неведом. Четыре раза по четыре есть шестнадцать. Пять раз по пять есть двадцать пять. Вынимаем шестнадцать из двадцати пяти, остается девять. Сколько раз мне взять, чтобы получилось девять? Три раза по три есть девять. Три есть ширина». Ныне мы бы записали так: «х 2 = 52–42». Недостаток словесной постановки задач — не столько в очевидной громоздкости, сколько в том, что с прозой не получается обращаться так же, как с уравнением, да и правила алгебры применять не так-то просто. На преодоление этого недостатка ушли тысячи лет: старейшее известное использование символа «плюс» появляется в одном немецком манускрипте 1481 года.

Приведенная выдержка показывает, что вавилонянам была известна теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. Уловка с веревками говорит нам о том, что и египтяне, похоже, знали это соотношение, однако вавилонские писцы испещрили свои глиняные документы впечатляющими таблицами троек, иллюстрирующих эту зависимость. Они записали не только малые тройки — 3, 4, 5 или 5, 12, 13, но и большие — к примеру, 3456, 3367, 4825. Вероятность обнаружить такую тройку путем случайного перебора разных сочетаний чисел по три невелика. Первая дюжина чисел — 1, 2…, 12 — дает сотни разных комбинаций по три, однако лишь 3, 4, 5 удовлетворяет условиям теоремы. Если только вавилоняне не подрядили армию счетоводов, проведших всю жизнь за вычислениями, можно заключить, что о простой теории чисел им было известно достаточно, чтобы выписать эти тройки.

Несмотря на достижения египтян и сообразительность вавилонян, их вклад в математику свелся к обеспечению греков собранием проверенных математических фактов и общих правил. Они действовали подобно полевым исследователям, трудолюбиво описывающим разные биологические виды, а не современным генетикам, стремящимся понять, как же организмы развиваются и функционируют. Например, хоть обе цивилизации и знали теорему Пифагора, ни та, ни другая не вдумалась в общую закономерность, которую мы сегодня записываем как a 2 + b 2 = c 2 (где с — длина гипотенузы прямоугольного треугольника, а и b — длины двух других сторон). Они, похоже, никогда не задавались вопросом, почему такое соотношение вообще существует или как его применить, чтобы получить большее знание. Точное ли это соотношение или приблизительное? В принципе, этот вопрос — ключевой. Но с практической точки зрения — кому какое дело? Пока не появились древние греки, никому никакого дела и не было.

Вообразите задачу, ставшую главной головной болью в геометрии Древней Греции, но никак не волновавшую ни египтян, ни вавилонян, — она замечательно проста. Возьмем квадрат с длиной стороны в одну единицу — какова будет длина его диагонали? Вавилоняне рассчитали это значение как 1,4142129 (в десятичной записи). Этот ответ верен до третьего шестидесятеричного знака после запятой (вавилоняне применяли шестидесятеричную систему счисления). Греки-пифагорейцы додумались, что это число нельзя записать как целое или дробь — для нас, ныне живущих, это означает, что число записывается в виде бесконечной вереницы десятичных знаков без всякой закономерности: 1,414213562… Для греков это оказалось ударом, кризисом религиозных масштабов, из-за которого убили как минимум одного ученого — за то, что поднял визг о значении квадратного корня из двух. Но с чего бы? Ответ — в сути величия греков.

Категория: ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА | Добавил: admin | Теги: развитие математики, Уроки математики, начало математики, история геометрии, сайт для учителей математики, математика в школе, история математики
Просмотров: 177 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ

ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск
Copyright MyCorp © 2017
Яндекс.Метрика Рейтинг@Mail.ru