Воскресенье, 17.12.2017, 10:48
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ЧИСЛОВАЯ СИМВОЛИКА СРЕДНЕВЕКОВЬЯ [9]
ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА [38]
Статистика

Онлайн всего: 3
Гостей: 3
Пользователей: 0
Форма входа

Главная » Файлы » ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ » ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА

Необходимая неопределенность бытия
06.05.2016, 15:12

Неопределенность в квантовой механике — дело принципа. Принципа неопределенности. Согласно ему, некоторые характеристики систем, количественно описанные ньютоновскими законами движения, не могут быть описаны бесконечно точно.

Недавно Алексею страшно понравилась одна старая хохма. Монашка, священник и раввин играют в гольф. Промазывая, раввин всякий раз восклицает: «Бога в душу, я промазал!» К семнадцатой лунке священник начинает закипать. Раввин обещает сдерживаться, однако, промахнувшись мимо очередной лунки, опять кричит: «Бога в душу, я промазал!» Тут священник предупреждает его: «Еще раз ругнешься, Бог тебя поразит на месте». У следующей по счету лунки раввин снова дал зевка и опять ругнулся. Небеса потемнели, поднялся ветер и сквозь тучи жахнула ослепительная молния. Когда дым рассеялся, перепуганный священник и остолбеневший раввин уставились на останки монашки, поджаренные до хруста. И тут с небес раздался громоподобный голос: «Бога в душу, я промазал!»

Алексей говорит, что это смешно, потому что непочтительно к Богу, т. е., иными словами, представляет божество несовершенным, способным на человеческие оплошности. Понятие о несовершенном Боге или Природе — вот что заботило многих физиков в квантовой механике. Богу же указать местоположение чего бы то ни было точно — раз плюнуть, нет?

Этот предел определенности в природе вдохновил Эйнштейна на знаменитое высказывание: «Квантовая механика действительно впечатляет. Но внутренний голос говорит мне, что это еще не настоящий Иаков. Эта теория говорит о многом, но все же не приближает нас к разгадке тайны Всевышнего. По крайней мере, я уверен, что Он не бросает кости». Если бы хохма была в ходу во времена Эйнштейна — а это очень старая шутка, — он, возможно, пробормотал: «Всевышний может метнуть молнию куда и когда пожелает».

Вероятно, — за исключением отношений Шрёдингера с особами противоположного пола — все в нашей жизни есть сплошная неопределенность. Так отчего же, спросим мы, принцип, утверждающий нечто очевидное, заслуживает столь величавого имени? Неопределенность принципа Гейзенберга — странного фасона. Это разница между классической и квантовой теорией — между пределами человеческих возможностей и, скажем так, божественных.

Загадайте ребенку загадку: все гамбургеры-«четверть фунтовики» в «Макдональдсе» весят по четверти фунта — правда или чушь? Детишки-циники скажут «чушь», исходя из логики, что компания, продающая сорок миллионов гамбургеров ежедневно, может крупно сэкономить на мясе, не докладывая сотую долю фунта в каждый. Но речь не о системной ошибке — в равной степени не может быть, что каждый гамбургер весит ровно 0,24 фунта. Весь фокус в том, что каждый бургер в «Макдональдсе» весит немножко по-разному.

Разница тут не сводится к кетчупу. Если аккуратно все измерить, выяснится, что каждый гамбургер имеет разную толщину, уникальную форму и личность — на микроскопическом уровне. Как и среди людей, среди гамбургеров нет двух одинаковых. С точностью до какого десятичного знака надо померить бургеры, чтобы все их различать по весу? Раз их продают свыше миллиарда в год, т. е. 109, этих знаков должно быть не менее 9. Однако вряд ли у этих бургеров поменяют название на «0,250000000-фунтовики».

Бургер бургеру рознь — то же верно и для экспериментальных замеров. Действия, производимые в процессе измерения, механическое и физическое состояние весов, потоки воздуха вокруг, местная сейсмическая активность, атмосферное давление — уйма мельчайших факторов, и каждый чуточку меняется при всяком следующем замере. Вводим различение потоньше — и с гарантией не получаем воспроизводимых результатов.

Вот это — не принцип неопределенности.

Квантовый принцип неопределенности идет дальше; он гласит, что определенные качества образуют комплементарные пары — пары, у которых есть определенное ограничение: чем точнее измерено одно качество, тем менее точно удастся измерить другое. Согласно квантовой теории, значение этих комплементарных свойств за пределами ограничивающей точности неопределенно, а не просто за пределами возможностей нашего оборудования.

Многие годы физики пытались доказать, что таково ограничение нашей теории, а не самой природы. Они предполагали, что где-то прячутся «скрытые переменные» — определенные, но неподвластные нашим измерениям. Оказывается, единственный вид измерения, доступный нам, — такой, что позволяет отмести эти самые скрытые переменные. В 1964 году американский физик Джон Белл объяснил, как это можно проделать. В 1982-м эксперимент поставили, и он показал, что предположение о скрытых переменных неверно. Ограничение действительно обусловлено законами физики.

Математика принципа неопределенности утверждает: результат неопределенности двух комплементарных членов пары должен равняться числу, называемому постоянной Планка.

Местоположение — часть одной из комплементарный пар принципа неопределенности. Ее напарник, импульс, есть — без учета фактора массы — скорость объекта. Брачное свидетельство описывает ограничение для этой пары: погрешность одного меняется в обратной пропорции к точности второго. У этого ограничения нет исключений, это очень католический брак: никаких неверностей, никаких разводов. Умножаем погрешность определения местоположения на погрешность определения скорости и получаем число, равное числу герра Планка.

Постоянная Планка — малюсенькое число. В противном случае мы бы заметили квантовые эффекты гораздо раньше (если бы в таком мире вообще могли существовать). Прилагательное «малюсенький» в данном случае есть буквально «порядка миллиардных». Постоянная Планка примерно равна одной миллиардной миллиардной миллиардной, или 10–27 чего-нибудь, в данном случае — единицы эрг-грамма. Разумеется, значение постоянной Планка зависит от того, в каких единицах она выражена. Эрг-грамм — единица, с которой мы сталкиваемся в быту. Представьте неподвижно лежащий на столе однограммовый пинг-понговый шарик. Для большинства из нас «неподвижно лежащий» означает скорость, равную нулю. Физик-экспериментатор знает: измерение без указания пределов погрешности имеет мало смысла. Вместо описания «шарик лежит неподвижно» в записях экспериментатора появится скорее такая формулировка: «Шарик не движется быстрее одного сантиметра в секунду». В классической физике это и будет весь сказ. В квантовой механике даже эта не бог весть какая точность имеет цену: она устанавливает предел, с которым можно определить местоположение пинг-понгового шарика.

Предел точности в 1 сантиметр в секунду приводит к граничной точности, которая, как и постоянная Планка, — ма-а-аленькая-малюсенькая. Проделав вычисления, выясним, что местоположение шарика мы можем установить с точностью до 10–27 см. Поскольку такой предел не слишком стесняет, возникает знакомый вопрос: и кому это надо? До конца XIX века никому и не было надо — вернее, никто не обращал внимания. Но давайте-ка заменим пинг-понговый шарик на электрон. Как раз такую замену и произвели физики в конце позапрошлого века.

Помните оборот «без учета фактора массы», который столь непринужденно включен в определение импульса? Оно, может, в свое время и не производило особого впечатления, однако именно это уточнение — причина заметности квантовых эффектов в масштабах не пинг-понговых шариков, но атомов.

Мы определили массу шарика для пинг-понга в 1 грамм. Масса электрона — 10–27 граммов. В отличие от шарика, погрешность определения скорости в 1 см/сек для электрона превращается в ограничение определения точности импульса до 10–27 г-см/сек — из-за фактора массы электрона измерение скорости, казавшееся небрежным, делает определение импульса очень точным. Зато с возможностью определить местоположение электрона дело плохо.

Если, как и в случае с шариком для пинг-понга, мы определяем скорость электрона с точностью до ± 1 см/сек, местоположение электрона не удастся определить точнее, чем ± 1 см. Такое ограничение точности — совсем не малюсенькое. Напротив, оно довольно заметно. Паршивая выйдет игра в пинг-понг при такой точности определения местоположения шарика, но на атомном уровне ситуация именно такова. Для электронов в атоме определять их местоположение как «ну где-то в радиусе 10–8 см», что и есть примерные размеры атома, означает вынужденную неопределенность в части скорости электронов до 10+8 см/сек, а эта неопределенность практически равна самой скорости электрона.

Квантовой механике в формулировке Гейзенберга и Шрёдингера удалось весьма успешно описать явления и атомной, и даже ядерной физики своего времени. Но применение принципа неопределенности к гравитации в описании теории Эйнштейна приводит нас к довольно диковинным выводам о геометрии пространства.

Категория: ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА | Добавил: admin | Теги: развитие математики, Уроки математики, математика в школе, начало математики, история геометрии, сайт для учителей математики, история математики
Просмотров: 144 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ

ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск
Copyright MyCorp © 2017
Яндекс.Метрика Рейтинг@Mail.ru