Пятница, 13.12.2024, 15:01
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Главная » Файлы » МИР МАТЕМАТИКИ » АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ

Вес, рост, коэффициент корреляции и его значение
14.12.2015, 21:20

Мы знаем, что рост и вес человека связаны и что высокие люди обычно весят больше, чем низкие (разумеется, существуют исключения, но мы говорим об общем правиле). Здесь речь не идет о строгой связи: нет математической формулы, с помощью которой можно вычислить вес человека, зная его рост. Тем не менее существует тенденция, определенная взаимосвязь.

На следующей диаграмме показана связь роста и веса в группе из 92 студентов университета (использовались данные, входящие в пакет статистических программ Minitab, о котором мы уже упоминали в главе 1).



Соотношение между весом и ростом в группе из 92 студентов.


Как вы охарактеризуете эту зависимость? Она «сильная», «заметная» или «слабая»? Как вы понимаете, в подобных ситуациях необходимо оценивать зависимость более точно. Для этого используется показатель, называемый коэффициент корреляции (иногда его называют коэффициентом корреляции Пирсона).

Формула для вычисления коэффициента корреляции несколько громоздка, но вывести ее нетрудно (не беспокойтесь, мы не будем выводить эту формулу). По сравнению с другими похожими показателями коэффициент корреляции обладает многими преимуществами: его значения всегда лежат в интервале от —1 до 1 и не зависят от единицы измерения исходных данных. В нашем случае коэффициент корреляции не изменится, если мы будем использовать сантиметры и килограммы вместо дюймов и фунтов (как в исходных примерах).

Если коэффициент корреляции равен 1, это означает, что между двумя переменными существует строгая зависимость. При увеличении значения одной переменной значение другой также увеличится. В этом случае между переменными действительно присутствует математическая зависимость, и зная значение одной переменной, можно точно вычислить значение другой. Однако в реальности подобная ситуация встречается крайне редко. Если коэффициент корреляции равен, например, 0,8, это означает наличие четкой взаимосвязи. В нашем примере коэффициент корреляции равен 0,785. Если он равен нулю, это указывает на отсутствие какой-либо взаимосвязи. Отрицательные значения означают то же, что и положительные, с единственной разницей: с ростом значения одной переменной значение другой будет не увеличиваться, а уменьшаться.



Расчет коэффициента корреляции с помощью Excel.


Однако этот показатель имеет свои недостатки (ничто не совершенно!). Если взаимосвязь между переменными отсутствует, не следует ожидать, что коэффициент корреляции будет равен нулю. Это будет означать, что данные распределены абсолютно равномерно, что не встречается на практике. Коэффициент корреляции может быть примерно равным нулю, но что именно означает это «примерно равен»?

Кроме того, значение этого коэффициента зависит от объема исходных данных. Если объем исходных данных невелик, а значение коэффициента корреляции далеко от нуля, это не означает наличие корреляции. Если даны всего лишь два значения каждой переменной, то коэффициент корреляции всегда будет равен 1 или —1 вне зависимости от того, присутствует ли корреляция на самом деле.

На следующей диаграмме представлено 35 точек, коэффициент корреляции равен 0,494. Это значение достаточно далеко от нуля, чтобы можно было говорить о присутствии корреляции? Или же это расположение точек можно получить случайным образом и переменные никак не связаны между собой?



Существует ли взаимосвязь между этими переменными?


Чтобы определить, действительно ли полученный коэффициент корреляции свидетельствует о взаимосвязи (или, если говорить на языке статистики, является ли это значение статистически значимым), используем моделирование. Сгенерируем два множества случайных чисел по 35 чисел в каждом. Очевидно, что эти числа будут никак не связаны между собой, однако коэффициент корреляции между ними не будет строго равен нулю, а будет равняться, например, — 0,123. Если мы заново сформируем эти два множества случайным образом и повторим моделирование 10000 раз, то получим 10000 значений коэффициента корреляции между двумя совокупностями из 35 чисел, которые никак не связаны между собой. Чтобы рассчитать эти значения, используем небольшую программу. Результат ее работы представлен на следующей гистограмме. Вертикальной чертой обозначено значение коэффициента корреляции, полученное нами в предыдущем примере, равное 0,494.



Значения коэффициента корреляции для двух совокупностей из 35 не связанных между собой чисел.


Из гистограммы следует, что коэффициент корреляции действительно может принять полученное значение, если переменные не связаны между собой, но очевидно, что вероятность этого крайне мала. Анализ результатов моделирования показывает (на гистограмме это не заметно), что 12 значений больше 0,494, 9 — меньше —0,494. Это означает, что полученное нами значение (или большее) выпадает примерно два раза из 1000, если исходные переменные независимы.

Может ли быть так, что наш случай — именно тот, что выпадает два раза из 1000? Это неизвестно, но маловероятно. Разумнее всего полагать, что проанализированные нами переменные, соответствующие весу и росту 35 женщин в группе из 92 студентов, взаимосвязаны.

Категория: АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ | Добавил: admin | Теги: сайт для математиков, математический сайт, Мир Математики, занимательная математика, дидактический материал по математик, популярная математика
Просмотров: 1489 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 2
    Гостей: 2
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru