Вторник, 19.01.2021, 12:12
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 9
Гостей: 9
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА

Основные углы и расстояния: азбука астрономии
12.12.2014, 15:44

Очевидно, что основной целью науки, посвященной наблюдению и изучению объектов, является определение их местоположения. В решении этой крайне важной задачи главную роль играет математика, позволяющая вычислить три значения: величины двух углов, указывающих расположение объекта на небесной сфере, и расстояние от объекта до нас. Определить эти два угла сравнительно просто, а вот вычисление расстояний до небесных тел — напротив, одна из сложнейших задач астрономии.

Определение положения по двум углам

Для расчета положения тела на поверхности Земли используется метод координат. Так как результаты астрономических наблюдений часто зависят от того, где находится наблюдатель, учитывать земные координаты при работе с астрономическими данными крайне важно. Коротко опишем метод расчета положения небесных тел.

Наша планета вращается вокруг оси, которая обычно используется в качестве линии отсчета при определении положения точек на поверхности Земли. К примеру, точки пересечения земной оси с поверхностью нашей планеты называются Северным и Южным полюсом. Если мы рассмотрим плоскость, перпендикулярную оси вращения Земли и проходящую через центр нашей планеты, то увидим, что линией пересечения этой плоскости и земной поверхности будет экватор, который делит Землю на два полушария, Северное и Южное (в их вершинах находятся Северный и Южный полюс соответственно). Если теперь мы представим бесконечное число плоскостей, параллельных экватору, и рассечем этими плоскостями поверхность Земли, то получим окружности меньшего размера — параллели.

Теперь представим, что Земля подобна апельсину, разделенному на дольки с помощью линий, проходящих через оба полюса перпендикулярно экватору. Будем называть эти линии меридианами. В отличие от экватора и параллелей, все меридианы имеют равную длину. В 1884 году было принято решение выбрать в качестве нулевого меридиан, проходящий через Гринвичскую обсерваторию близ Лондона. Этот меридиан сохранил свой статус до наших дней, хотя ранее большинство европейских моряков использовали в качестве нулевого меридиан острова Иерро в Канарском архипелаге, точнее меридиан мыса Орчилья на западной оконечности острова. Вызвано это было тем, что со времен Птолемея остров Иерро считался концом известного мира, и до 1492 года о землях, лежащих к западу от острова, ничего не было известно.


Музыка сфер. Астрономия и математика - _01.jpg

Теперь, когда мы определили параллели и меридианы, установить положение точки земной поверхности очень просто — достаточно указать, какая параллель и какой меридиан пересекаются в этой точке, и выразить данные с помощью географических координат — широты и долготы. Широта — это угол между экватором и параллелью точки, где находится наблюдатель, измеренный вдоль меридиана, проходящего через рассматриваемую точку. Широта измеряется в градусах и отсчитывается от 0 до 90° в обе стороны от экватора. Долгота также измеряется в градусах (от 0 до 180° в обе стороны) и отсчитывается вдоль экватора от нулевого меридиана до меридиана рассматриваемой точки. Долготу часто выражают в часах, минутах и секундах. Чтобы перевести углы в единицы времени, нужно лишь учесть, что 24 часа соответствуют 360°, следовательно, 1 час соответствует 15°.

Категория: МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА | Добавил: admin | Теги: Мир Математики, сферы, занимательная математика, астрономия и математика, популярная математика, дидактический материал по математик
Просмотров: 549 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru