Четверг, 25.07.2024, 04:17
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
МАТЕМАТИЧЕСКИЕ ЗАДАЧКИ-ГОЛОВОЛОМКИ [33]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ АДАМА ХАРТА-ДЭВИСА [85]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ И РАЗВЛЕЧЕНИЯ ГАРДНЕРА [46]
САЛЮТ, МАТЕМАТИКА! [19]
МАТЕМАТИЧЕСКАЯ ЛОГИКА [82]
Главная » Статьи » МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ » МАТЕМАТИЧЕСКАЯ ЛОГИКА

Неожиданные решения различного рода задач о буквах, словах и предложениях

Математики любят играть в слова. Например, в серьезной книге Ф. Хараря и Э. Палмера «Перечисление графов» мы встречаем примечание: «Рид сообщил Райту, что и он, и Райт допустили ошибку. Затем Рид и Райт, чтобы исправить положение вещей, указали в совместной работе на допущенную ранее ошибку. Возможно, что все это выглядело несколько иначе, ибо Райт утверждает, что он первый написал Риду». Примеров можно было бы привести так много, что они могли бы составить целую книгу.

Нетрудно понять, почему математикам нравятся такие шутки. Слова представляют собой не что иное, как комбинации букв, составленных в определенном порядке, так же как предложения — линейные последовательности слов, составленные в соответствии с формальными правилами синтаксиса. Таким образом, многое роднит лингвистику с комбинаторной математикой. Словесные квадраты по своей структуре аналогичны магическим квадратам. Знаки препинания в предложении соответствуют математическим символам (скобкам, плюсам, минусам и т. д.), вводящим «пунктуацию» в алгебраические предложения.

Все эти (и многие другие) приятные аналогии между языком и математикой собраны в последней, шестой главе нашей книги. Палиндромы — слова или фразы, которые читаются одинаково от начала к концу и от конца к началу, — аналогичны палиндромным числам. Как мы увидим, в теории чисел существует известная «гипотеза о палиндромных числах», не доказанная и не опровергнутая. О палиндромных простых и составных числах, являющихся квадратами и кубами, доказано немало интересных теорем. Другие головоломки в этой главе связаны с разбиением слов на части, во многом напоминающим разбиение чисел на суммы.

Если буквы рассматривать как геометрические фигуры, то мы сразу же вступаем в область необычных геометрических задач и головоломок. Мы увидим, каким образом эти задачи связаны с существованием двух важных разновидностей операции симметрии: симметрии относительно поворота на 180° и зеркальной симметрии. Мы обнаружим, что некоторые слова и даже целые предложения выдерживают поворот на 180°, и некоторые цифры на индикаторе микрокалькуляторов переходят в буквы латинского алфавита.

Буквы не обязательно считать жесткими и нерастяжимыми. Если мы будем рассматривать их не как геометрические фигуры, сохраняющие форму при поворотах и отражениях, а как топологические фигуры, которые можно изгибать, сжимать, растягивать, как резиновые жгуты, то перед нами откроется еще одна обширная область занимательных задач, с решением которых вам также предстоит познакомиться. Именно в этих задачах вы увидите «за работой» простейшие топологические понятия.

Наконец, вам предстоит встреча с задачами, связанными с важными понятиями математической логики. Простейшая задача о высказывания, противоположном высказыванию «не в», познакомит вас со свойствами отрицания и правилами обращения с отрицательными величинами в алгебре. Многие из наших шуточных задач становятся понятными, если вы четко осознаете, что говорить о словах и предложениях живого языка можно, лишь построив язык следующего, более высокого уровня, который логики называют метаязыком.

Мы умышленно стремились сделать заключительную главу нашей книги самой легкой и занимательной. Может быть, вас удивляет, почему для словесных забав и игр вообще, нашлось место в книге по занимательной математике? По существу мы уже ответили на ваш недоуменный вопрос. Дело, разумеется, не в том, что математики любят играть в слова или что лингвистике присущи определенные комбинаторные аспекты. Мы хотели лишь показать, что даже игра в слова может приоткрыть перед вами неожиданные и важные аспекты серьезной математики.


Категория: МАТЕМАТИЧЕСКАЯ ЛОГИКА | Добавил: admin (07.12.2013)
Просмотров: 827 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru