Воскресенье, 24.11.2024, 07:28
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ИСТОРИЯ МАТЕМАТИКИ. ОТ СЧЕТНЫХ ПАЛОЧЕК ДО БЕССЧЕТНЫХ ВСЕЛЕННЫХ [24]
ПЕРИОДЫ РАЗВИТИЯ МАТЕМАТИКИ [7]
В МИРЕ ЦИФР И ЧИСЕЛ [23]
СТИХИ К УРОКАМ МАТЕМАТИКИ [115]
О МАТЕМАТИКЕ КАК ЧАСТИ ДУХОВНОЙ КУЛЬТУРЫ [10]
ЕСТЬ У МАТЕМАТИКИ НАЧАЛО [15]
Главная » 2013 » Август » 28 » Дом Мудрости
19:41
Дом Мудрости

В седьмом веке нашей эры на Аравийском полуострове возникла новая монотеистическая религия, которая должна была втиснуться между христианским и персидским мирами. В 622 году пророк Мухаммад бежал из Мекки и нашел прибежище в Медине. Восемь лет спустя он возвратился во главе армии и триумфально вошел в Мекку. Вдохновленные прозрениями Мухаммада, его последователи распространили слово Корана и создали Арабский халифат, который в пору своего расцвета раскинулся от Кордовы до Самарканда. С 661 года империей, со столицей в Дамаске, правила династия Омейядов, но в 750 году они были свергнуты Аббасидами, которые перенесли столицу в Багдад (с 762 года). Омейяды бежали в испанские земли, где создали Кордовский халифат.

Халифы династии Аббасидов стремились построить в Багдаде новую Александрию и основали там астрономическую обсерваторию, библиотеку и исследовательский центр под названием «Байт аль-Хикма» («Дом Мудрости»). Был задуман и осуществлен гигантский проект, согласно которому на арабский язык были переведены все лучшие научные труды того времени, какие только можно было найти. В арабской математике мы можем увидеть влияние вавилонских, индийских и греческих идей. Их синтез и развитие привели к созданию фундаментальных трудов, особенно по алгебре и тригонометрии. Хотя алгебраическая символика, какой мы ее знаем сегодня, — это намного более поздняя европейская разработка, создание алгебраических рассуждений с большой долей вероятности можно приписать арабским математикам. Более ранняя математика нередко могла алгебраически интерпретироваться, но явное признание того факта, что геометрические проблемы могут быть выражены алгебраически, что геометрические процедуры могут быть преобразованы в алгебраические алгоритмы и что алгебраические процедуры могут выйти за рамки своих геометрических корней, — это вклад арабов в математику.

Очень важной работой в истории алгебры был труд Диофанта Александрийского (ок. 200 — ок. 284) «Арифметика». При том, что даты жизни Диофанта, казалось бы, известны, тем не менее до сих пор нет окончательной ясности, к какому столетию следует его отнести, хотя решение математической загадки, которая, по слухам, была начертана на его могиле, указывает на его возраст в момент смерти. «Арифметика» считается новой ветвью греческой математики, она посвящена решению определенных и неопределенных уравнений в числовой форме, независимо от геометрических обоснований. Ограничение на целочисленные решения ныне сформировалось в отдельную ветвь математики, известную как диофантовы уравнения. Примером таких уравнений может служить поиск пифагоровых троек. Диофант также использовал то, что называют синкопированной алгебраической записью, то есть промежуточной стадией между риторической и полностью символической алгеброй. Эта работа была переведена на арабский язык и тщательно изучалась арабскими математиками.

Одним из наиболее значительных арабских математиков был Абу Джафар Мухаммад ибн Муса ал-Хорезми (ок. 783 — ок. 850). По его имени можно понять, что он приехал из Хорезма — города в Средней Азии. Похоже, что большую часть своей жизни ал-Хорезми провел в Багдаде, где занимал должность директора библиотеки недавно основанного там Дома Мудрости. Его трактат по алгебре «Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала» («Книга о восполнении и противопоставлении») позднее оказал огромное влияние на развитие математики в Европе. Наше слово «алгебра» возникло от латинской транслитерации слова «ал-джабр». Ал-Хорезми стремился решить практические задачи, возникающие в торговле, при наследовании и в использовании земли. В алгебраических разделах рассматриваются линейные и квадратные уравнения — термины «восполнение» и «противопоставление» относятся к алгебраическим преобразованиям. Ал-Хорезми разделяет квадратные уравнения на шесть различных групп. В арабской математике требовалось, чтобы все коэффициенты и все ответы были положительными, поэтому вместо того, чтобы писать общий вид уравнения ах2 + bx + с = 0, где х — неизвестная величина, и а, b,с — коэффициенты, что было бы бессмысленным, поскольку сумма положительных элементов никогда не могла быть равна нолю, ал-Хорезми рассматривал уравнения ax2 + bx = с и ax2 + с = bx как два различных типа уравнений. Алгебраические решения для каждого типа уравнения приводятся отдельно, они сопровождаются геометрической иллюстрацией, возможно используя работы Евклида, но он также применяет методы, похожие на вавилонские и индийские. Геометрические иллюстрации алгебраических методов пока еще риторические: ал-Хорезми не развил символический язык, но непринужденность, с которой он перемещается между царствами алгебры и геометрии, значительно отличается от греческого стиля математики.

Ко времени ал-Караджи (953-1029) арабские математики пытались освободить алгебру от геометрических рассуждений и превратить ее в общепринятую технику арифметической работы с неизвестными. Выдающийся персидский математик Фахр ад-Дин Абу Бакр Мухаммад ибн ал-Хусайн ал-Караджи основал очень влиятельную школу алгебры в Багдаде. Его главная работа «Ал-Фахри» содержит учение об алгебраическом исчислении и об определённых и неопределённых уравнениях. Ал-Караджи дал правила для определения суммы арифметической прогрессии, а также суммы квадратов и кубов последовательных чисел, хотя он не сумел определить, что х0 = 1. Ал-Караджи вывел формулу бинома и привел таблицу биномиальных коэффициентов, известную ныне как треугольник Паскаля, — интересно, что персидский математик пришел к этому индуктивным методом. Его доказательство, строго говоря, нельзя назвать доказательством по индукции, тем не менее это числовая и алгебраическая процедура без ссылки на геометрию.

Ко времени Гиясаддина Абу-ль-Фатха Омара ибн Ибрахим ал-Хайяма Нишапури, более известного как Омар Хайям (1048–1131), турки-сельджуки захватили Багдад и объявили там ортодоксальный мусульманский султанат. После обучения в Нишапурском медресе Хайям в 1070 году оставил эти политически опасные земли и перебрался в относительное спокойствие Самарканда. Хотя он больше известен как поэт и автор рубаи, Хайям главным образом был ученым и философом. Именно в Самарканде он написал свою «Алгебру», самая оригинальная часть которой была посвящена решению кубических уравнений геометрическими средствами. Его открытие состояло в том, что решение кубического уравнения можно было найти путем определения точки пересечения двух конических сечений, с которыми он познакомился, читая перевод труда Аполлония Пергского. Например, уравнение вида х3 + ах = с решалось как пересечение соответственно построенного круга и параболы. Он разделил по типам кубические уравнения и их решения, создал алгебраические методы для того, чтобы упростить некоторые сложные кубические уравнения до уже известных типов или до более простых квадратных уравнений. Хотя с точки зрения развития алгебры это может показаться шагом назад, многие аспекты делают вклад Хайяма уникальным. Он утверждал, что древние не оставили никаких сведений относительно решения кубических уравнений, так что нам следует предположить, что у него был достаточный доступ к лучшим библиотекам в империи. Хайям также заявлял, что геометрическое решение кубических уравнений не может быть найдено с использованием только циркуля и линейки — доказательство этого факта будет получено только через семьсот лет. Хайям первым сумел понять, что в кубическом уравнении может быть больше одного решения, но не сумел уловить, что их может быть три. Хайям признавал, что его работа не закончена, и искал полное алгебраическое решение кубического уравнения и уравнений более высокого порядка, аналогичное формуле для решения квадратных уравнений. Но это достижение будет сделано только в эпоху итальянского Ренессанса. Аналитическая геометрия Хайяма стала кульминацией арабского сплава алгебраических и геометрических познаний. Затем до Декарта не было сделано практически ни одного серьезного шага.

Арабские математики в основном интересовались астрономией, их достижения в области тригонометрии позволили им построить более точные астрономические таблицы. Исламский календарь был основан на лунных месяцах. Каждый месяц начинался с первого появления лунного месяца после новолуния. Ежедневно, в зависимости от положения Солнца, должны были читаться пять молитв: например, дневная молитва должна происходить в тот момент, когда длина тени, отбрасываемой предметом в полдень, увеличилась на величину, равную высоте самого предмета. Верующий должен произносить молитву, обратившись лицом в направлении Каабы в Мекке. Все три этих правила требовали астрономических знаний и понимания движений планет, а также географии Земли. Поначалу они в основном использовали методы наблюдения, а из греческих и индийских источников пришли таблицы. Арабы значительно улучшили и таблицы, и методы наблюдения, в мечетях в тринадцатом веке работали астрономы, профессионально использовавшие астролябии, секстанты и солнечные часы.

Стало очевидно, что любой шаг вперед в области астрономических вычислений требовал создания более точных тригонометрических таблиц. Давайте оценим это развитие по методам, используемым для вычисления синуса 1°. Были даны определения синуса, косинуса и тангенса, были выведены различные формулы, вроде синуса суммы и разницы двух углов. Общие методы начинали создаваться с тех синусов, которые были точно известны из геометрических вычислений, вроде синуса 60° = √3/2 или синус 30° = 1/2, а затем использовались формулы для уменьшения угла вдвое. Угол последовательно делился пополам, пока не доходил до значения в 1° или становился близок к этому значению. Один из крупнейших математиков и астрономов средневекового Востока Абу-л-Вафа (Абу-л-Вафа Мухаммад ибн Мухаммад ибн Яхья ибн Исмаил ибн Аббас ал-Бузджани) (940–998) начал с известного значения синуса 60° и уже вычисленного значения синуса 72°, и, применяя подходящие формулы, он смог вычислить синус 2°. Используя формулу двойного угла, он постепенно вычислил синус 1°30′ и синус 45'. Поскольку эти два угла достаточно близки, он предполагал, что промежуточные значения будут подчиняться относительно линейным соотношениям и арифметический метод, таким образом, привел бы к необходимому значению синуса 1°. При использовании подобных методов Абу-л-Вафа смог построить полную таблицу синусов, с углами около 1/4°, или 15' в шестидесятеричной системе. Он добился точности в 5 шестидесятеричных знаков или 8 десятичных знаков.

Следующий серьезный шаг был сделан только через триста лет, несмотря на то что теория была полностью разработана. К тому времени Багдад находился уже под властью монголов, которые разорили и разрушили его. Внук Тимура Улугбек (Султан Мухаммед ибн Шахрух ибн Тимур Улугбек Гураган) (1394–1449) — выдающийся астроном и астролог — в 1409 году был объявлен правителем Мавераннахра со столицей в Самарканде. Став правителем державы Тимуридов, Улугбек перенес центр науки в Самарканд. Математик и астроном Ал-Каши (1380–1429), первый директор новой Самаркандской обсерватории, значительно уточнил значения синусов в таблице. Используя формулу синуса тройного угла, он составил кубическое уравнение, чтобы найти синус 1° исходя из синуса 3°. Затем, используя повторяющуюся процедуру, он вычислил синус 1° до 9 шестидесятеричных знаков, что эквивалентно 16 десятичным знакам. Остальную часть таблицы можно было завершить с помощью уже установленных взаимоотношений, однако в любом случае это был феноменальный вычислительный подвиг. Аналогичный метод использовал Иоанн Кеплер двести лет спустя. Помимо увеличения точности вычислений, арабы усовершенствовали астролябию и использовали ее не только как инструмент для астрономических наблюдений, но и как аналоговый калькулятор, с помощью которого определяли время. Впрочем, звезда Багдада уже закатилась. За монгольским завоеванием последовало нашествие оттоманских турок, которые сделали столицей и интеллектуальным центром Стамбул.

…я был лишен возможности систематически заниматься этим делом и даже не мог сосредоточиться на размышлении о нем из-за мешавших мне превратностей судьбы. Мы были свидетелями гибели ученых, от которых осталась малочисленная, но многострадальная кучка людей. Суровости судьбы в эти времена препятствуют им всецело отдаться совершенствованию и углублению своей науки. Большая часть из тех, кто в настоящее время имеет вид ученых, одевают истину ложью, не выходя в науке за пределы подделки и притворяясь знающими. Тот запас знаний, которым они обладают, они используют лишь для низменных плотских целей. И если они встречают человека, отличающегося тем, что он ищет истину и любит правду, старается отвергнуть ложь и лицемерие и отказаться от хвастовства и обмана, они делают его предметом своего презрения и насмешек.

Омар Хайям.
Трактат о доказательствах задач алгебры и алмукабалы (ок. 1070)
Категория: ИСТОРИЯ МАТЕМАТИКИ. ОТ СЧЕТНЫХ ПАЛОЧЕК ДО БЕССЧЕТНЫХ ВСЕЛЕННЫХ | Просмотров: 1200 | Добавил: admin | Теги: развитие математики, зарождение математики, Уроки математики, сайт для учителей математики, Геометрия, математика в школе, Алгебра, история математики | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru