Воскресенье, 24.11.2024, 07:03
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ИСТОРИЯ МАТЕМАТИКИ. ОТ СЧЕТНЫХ ПАЛОЧЕК ДО БЕССЧЕТНЫХ ВСЕЛЕННЫХ [24]
ПЕРИОДЫ РАЗВИТИЯ МАТЕМАТИКИ [7]
В МИРЕ ЦИФР И ЧИСЕЛ [23]
СТИХИ К УРОКАМ МАТЕМАТИКИ [115]
О МАТЕМАТИКЕ КАК ЧАСТИ ДУХОВНОЙ КУЛЬТУРЫ [10]
ЕСТЬ У МАТЕМАТИКИ НАЧАЛО [15]
Главная » 2013 » Июль » 4 » СОВРЕМЕННАЯ МАТЕМАТИКА
20:49
СОВРЕМЕННАЯ МАТЕМАТИКА
Создание дифференциального и интегрального исчислений ознаменовало начало «высшей математики». Методы математического анализа, в отличие от понятия предела, лежащего в его основе, выглядели ясными и понятными. Многие годы математики, в том числе Ньютон и Лейбниц, тщетно пытались дать точное определение понятию предела. И все же, несмотря на многочисленные сомнения в обоснованности математического анализа, он находил все более широкое применение. Дифференциальное и интегральное исчисления стали краеугольными камнями математического анализа, который со временем включил в себя и такие предметы, как теория дифференциальных уравнений, обыкновенных и с частными производными, бесконечные ряды, вариационное исчисление, дифференциальная геометрия и многое другое. Строгое определение предела удалось получить лишь в 19 в.

Неевклидова геометрия. К 1800 математика покоилась на двух «китах» - на числовой системе и евклидовой геометрии. Так как многие свойства числовой системы доказывались геометрически, евклидова геометрия была наиболее надежной частью здания математики. Тем не менее аксиома о параллельных содержала утверждение о прямых, простирающихся в бесконечность, которое не могло быть подтверждено опытом. Даже версия этой аксиомы, принадлежащая самому Евклиду, вовсе не утверждает, что какие-то прямые не пересекутся. В ней скорее формулируется условие, при котором они пересекутся в некоторой конечной точке. Столетиями математики пытались найти аксиоме о параллельных соответствующую подходящую замену. Но в каждом варианте непременно оказывался какой-нибудь пробел. Честь создания неевклидовой геометрии выпала Н.И.Лобачевскому (1792-1856) и Я.Бойяи (1802-1860), каждый из которых независимо опубликовал свое собственное оригинальное изложение неевклидовой геометрии. В их геометриях через данную точку можно было провести бесконечно много параллельных прямых. В геометрии Б.Римана (1826-1866) через точку вне прямой нельзя провести ни одной параллельной.

О физических приложениях неевклидовой геометрии никто серьезно не помышлял. Создание А.Эйнштейном (1879-1955) общей теории относительности в 1915 пробудило научный мир к осознанию реальности неевклидовой геометрии.

Неевклидова геометрия стала наиболее впечатляющим интеллектуальным свершением 19 в. Она ясно продемонстрировала, что математику нельзя более рассматривать как свод непререкаемых истин. В лучшем случае математика может гарантировать достоверность доказательства на основе недостоверных аксиом. Но зато математики впредь обрели свободу исследовать любые идеи, которые могли показаться им привлекательными. Каждый математик в отдельности был теперь волен вводить свои собственные новые понятия и устанавливать аксиомы по своему усмотрению, следя лишь за тем, чтобы проистекающие из аксиом теоремы не противоречили друг другу. Грандиозное расширение круга математических исследований в конце прошлого века по существу явилось следствием этой новой свободы.

Математическая строгость. Примерно до 1870 математики пребывали в убеждении, что действуют по предначертаниям древних греков, применяя дедуктивные рассуждения к математическим аксиомам, тем самым обеспечивая своими заключениями не меньшую надежность, чем та, которой обладали аксиомы. Неевклидова геометрия и кватернионы (алгебра, в которой не выполняется свойство коммутативности) заставили математиков осознать, что то, что они принимали за абстрактные и логически непротиворечивые утверждения, в действительности зиждется на эмпирическом и прагматическом базисе.

Создание неевклидовой геометрии сопровождалось также осознанием существования в евклидовой геометрии логических пробелов. Одним из недостатков евклидовых Начал было использование допущений, не сформулированных в явном виде. По-видимому, Евклид не подвергал сомнению те свойства, которыми обладали его геометрические фигуры, но эти свойства не были включены в его аксиомы. Кроме того, доказывая подобие двух треугольников, Евклид воспользовался наложением одного треугольника на другой, неявно предполагая, что при движении свойства фигур не изменяются. Но кроме таких логических пробелов, в Началах оказалось и несколько ошибочных доказательств.
Создание новых алгебр, начавшееся с квартернионов, породило аналогичные сомнения и в отношении логической обоснованности арифметики и алгебры обычной числовой системы. Все ранее известные математикам числа обладали свойством коммутативности, т.е. ab = ba. Кватернионы, совершившие переворот в традиционных представлениях о числах, были открыты в 1843 У.Гамильтоном (1805-1865). Они оказались полезными для решения целого ряда физических и геометрических проблем, хотя для кватернионов не выполнялось свойство коммутативности. Квартернионы вынудили математиков осознать, что если не считать посвященной целым числам и далекой от совершенства части евклидовых Начал, арифметика и алгебра не имеют собственной аксиоматической основы. Математики свободно обращались с отрицательными и комплексными числами и производили алгебраические операции, руководствуясь лишь тем, что они успешно работают. Логическая строгость уступила место демонстрации практической пользе.
Категория: ПЕРИОДЫ РАЗВИТИЯ МАТЕМАТИКИ | Просмотров: 1175 | Добавил: admin | Теги: развитие математики, зарождение математики, Уроки математики, математика в школе, начало математики, сайт для учителей математики, история математики | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru