Воскресенье, 24.11.2024, 08:46
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ИСТОРИЯ МАТЕМАТИКИ. ОТ СЧЕТНЫХ ПАЛОЧЕК ДО БЕССЧЕТНЫХ ВСЕЛЕННЫХ [24]
ПЕРИОДЫ РАЗВИТИЯ МАТЕМАТИКИ [7]
В МИРЕ ЦИФР И ЧИСЕЛ [23]
СТИХИ К УРОКАМ МАТЕМАТИКИ [115]
О МАТЕМАТИКЕ КАК ЧАСТИ ДУХОВНОЙ КУЛЬТУРЫ [10]
ЕСТЬ У МАТЕМАТИКИ НАЧАЛО [15]
Главная » 2013 » Август » 28 » Военные игры
19:19
Военные игры

Люди всегда любили играть в игры, и в каждую эпоху существовало свое повальное увлечение. Большинство игр — сочетание умения и удачи, и лишь после многократных розыгрышей, нивелирующих влияние случая, выяснялось, кто на самом деле самый хороший игрок. Однако существуют некоторые игры, которые практически ничего не оставляют на откуп судьбе — никакого бросания игральных костей, никакой опоры на удачу. Это стратегические игры, и их исследование — предмет теории игр. Есть также игры, выигрыш в которых в буквальном смысле становится вопросом жизни или смерти. Поскольку грубые тактические ошибки менее дорого обходятся на смоделированном поле битвы, военные стратеги всегда обращались к военным играм, чтобы отточить свои навыки, так что нет ничего удивительного, что шахматы или японская игра го — это идеальные военные игры. Также не стоит удивляться тому, что первым практическим применением теории игр был анализ нового вида войны — скорее всего, последней.

В девятнадцатом веке пруссаки изобрели игру, называвшуюся «Кригшпиль», буквально «военная игра». В нее играли на специальной доске. Это была тактика в чистом виде, и она стала реалистичной, как никогда после, когда в ней появился рефери, выносящий решение по спорным ситуациям при помощи таблиц данных, полученных во время реальных сражений. Военный успех прусской армии в значительной степени приписывался их изощренной тактике, отработанной на этой игре. Эту игру взяли на вооружение такие удаленные от Германии страны, как Америка и Япония. Поражение Германии в Первой мировой войне положило конец мифическому статусу игры. Становилось очевидным, что быстрое развитие нового вооружения и систем поставок означало полный пересмотр военной стратегии. Вооруженные силы нуждались в математиках и ученых не только для того, чтобы развивать вооружение, но также и для разработки новых стратегий, что до этого времени было прерогативой генералов, погруженных в изучение военной истории. Особенно заметно это стало после Второй мировой войны, и понимание, что две супердержавы обладают оружием массового поражения, полностью изменило правила. Настольные игры с конницей и пушками казались почти доисторическими.

Но математики продолжали анализировать стратегические игры, чтобы создать теорию, имеющую практическое применение. Эмиль Борель, французский математик, бывший в 1920-х годах военно-морским министром Франции, написал труд, озаглавленный «Теория игр», в котором он проанализировал такие вещи, как блеф в покере и применение математики игр в экономике и политике. Влияние Бореля можно увидеть в такой значительной книге, как «Теория игр и экономического поведения», изданной в 1944 году. Она была написана венгерским математиком Джоном фон Нейманом и австрийским экономистом Оскаром Моргенштерном. Оба этих ученых в то время работали в Принстоне. Они представили теорию игр как возможную модель экономических взаимодействий. Экономисты не спешили хвататься за новую теорию, которая своими корнями уходила в военные стратегии.

Янош фон Нейман (1903–1957), позже известный как Джон фон Нейман, родился в Будапеште и с самого раннего детства демонстрировал феноменальные математические способности. В 1921 году он стал одним из крайне ограниченного числа евреев, поступивших в Будапештский университет, а в 1926 году получил докторскую степень, защитив диссертацию по теории игр, несмотря на то что никогда не посещал лекции. Вместо этого он провел предшествующие годы в Берлине и Цюрихе, изучая химию — предмет, который его отец считал наиболее перспективным с точки зрения выбора карьеры, продолжая математические исследования совместно с такими математиками, как Герман Вейль и Джордж Полья, а позднее учился вместе с Давидом Гилбертом в Геттингене. В 1930 году он отправился в Принстон, и в 1933 году стал одним из пяти первых математиков, поступивших в недавно основанный Институт специальных исследований в Принстоне, где провел большую часть своей жизни. Когда нацисты пришли к власти, он отказался от всех постов в Германии и решил обосноваться в Америке, но не как беженец, а потому, что считал, что там у него будет больше возможностей для работы. С 1940 года он активно занимался научным консультированием по военным вопросам, работал в Лос-Аламосе над проблемами квантовой механики для создания атомной бомбы, а в 1955 году был назначен в Комиссию по ядерной энергии. Вспоминая о днях, проведенных в Цюрихе, Полья рассказывает: «Джонни был единственным студентом, которого я боялся. Если по ходу лекции я упоминал о нерешенной проблеме, то почти всегда он подходил ко мне по окончании лекции с полным решением, накарябанным на клочках бумаги». Нейман умер в 1957 году от рака, и друзья рассказывали о его отчаянии от потери мыслительных способностей после того, как он всю жизнь старательно взращивал их. Самая запоминающаяся из его работ была посвящена теории игр, квантовой механике и методам вычисления.

Самый простой тип игры — игра с нулевой суммой, с двумя стратегиями и двумя игроками — игра, в которой два совершенных, рационально мыслящих игрока стремятся к победе. В этой игре общий счет равен нулю, то есть то, что один игрок выигрывает, другой проигрывает. Забавный пример такой игры — «раздел пирога». Этот сценарий случается во многих домах — надо разделить пирог между двумя детьми так, чтобы ни один из них не считал, что другому досталось больше. Решение — двухступенчатый процесс; один ребенок разрезает пирог пополам, а второй ребенок имеет право первого выбора. Оба ребенка хотели бы кусок побольше, но при разумном предположении, что каждый ребенок понимает жадность другого, это оптимальное решение. Первый ребенок должен разрезать пирог самым справедливым способом, потому что, если одна часть будет намного большей, тогда второй ребенок, без сомнения, выберет именно его. Так называемая минимаксная теория, разъясненная фон Нейманом, гласит, что в этом случае возникает «седловая точка», или оптимальное решение, когда оба игрока будут довольны. Теория была дополнена включением большего числа игроков. Когда число игроков увеличивается, решение задачи становится все более трудным. Большая часть книги обсуждает игры в терминах таблиц выплат игрокам, и, по мере того, как число игроков все увеличивается, таблицы становятся все больше и больше, требуя значительных матричных расчетов.

В 1940-х годах Джон Форбс Нэш дополнил теорию игр фон Неймана играми «с ненулевой суммой». Пример такой игры — фондовая биржа: среди игроков могут быть победители и проигравшие, но общий денежный банк также меняется вследствие увеличения капитализации рынка. Нэш обнаружил, что игры с «ненулевой суммой» также имеют равновесное решение. Он родился в 1928 году в Западной Вирджинии, закончил Технологический институт Карнеги и получил докторскую степень в Принстоне, защитив в 1950 году диссертацию по бескоалиционным играм. Подготавливая докторскую диссертацию, он написал статью, которая, в сочетании с многими другими, стала основанием для присуждения ему в 1994 году Нобелевской премии по экономике. Начиная с 1951 года он занимался преподаванием в Массачусетском технологическом институте, где провел революционную работу, посвященную геометрии, многочленам Римана и евклидовому пространству. В 1959 году этот самый многообещающий из молодых математиков заболел шизофренией. События его жизни и излечение в середине 1970-х годов были описаны им лично на Всемирном конгрессе по психиатрии в 1996 году. Он продолжал создавать выдающиеся работы даже во время пребывания в больнице, занимаясь такими областями математики, как геометрия, топология и дифференциальные уравнения. Он также продолжал заниматься геометрией пространства.

Работа Нэша показала, что есть сценарии, в которых оптимальный результат не является следствием действий, кажущихся наиболее очевидными. Известный пример этого — так называемая дилемма заключенного, изобретенная Мелвином Дрешером и изложенная Альбертом Такером на лекции студентам-психологам. Сценарий при пересказывании изменился, но в его оригинальной форме двое мужчин были арестованы за нарушение закона и помещены в отдельные камеры. Если один из них признается, он будет вознагражден, а второй — оштрафован. Если оба признаются, то оба будут оштрафованы. Если ни один не признается, то они оба будут освобождены. Суть дилеммы в том, что оптимальной стратегией будет сохранять спокойствие, в результате чего оба будут выпущены на свободу, но страх, что такая стратегия может иметь неприятные последствия, если другой человек признается, вполне может вынудить обоих признаться, и тогда оба будут оштрафованы. Именно такие сценарии и стратегические игры используют на переговорах, будь то торговля, военные переговоры, бизнес или работа с персоналом. Экспериментально было выяснено, что люди отлично умеют находить теоретически оптимальные решения, и случайное отступничество ведет к быстрому и неотвратимому возмездию другой стороны — тактика, известная как «зуб за зуб».

Есть игры, в которых существует оптимальная стратегия, и как только она нащупывается, игра становится чрезвычайно тривиальной. Например, крестики-нолики — популярная детская игра, но как только ее стратегия становится понятной и каждый игрок начинает действовать согласно этой стратегии, интерес к игре сразу теряется.

Нэш доказал, что даже шахматы имеют оптимальную стратегию, но эта игра настолько сложна, что оптимальная стратегия все еще не найдена, даже не ясно, будет ли результат ничьей или победой для белых. Если оптимальная стратегия когда-либо будет найдена, шахматы станут столь же тривиальными, как крестики-нолики. Есть ли оптимальная стратегия для применения ядерного оружия? В течение нескольких коротких лет Америка была единственной ядерной державой, но страх, что Россия создаст ядерный арсенал, заставил некоторых мыслителей, вроде фон Неймана и даже Бертрана Рассела, протестовать против первого ядерного удара по России и призывать всемирный парламент добиваться глобального мира. Это не было осуществлено, и мир вскоре перешел к политике сдерживания и взаимно гарантированного уничтожения. Подобные стратегии были разработаны в секретном консультативном органе ученых Корпорации RAND.

Корпорация RAND была основана в 1945 году на оборонные фонды, оставшиеся после войны. Первоначально они были частью проекта «Дуглас Эркрафт». В 1948 году она была формально заявлена как некоммерческая организация с финансированием, осуществляемым военными и деловыми кругами. Это был типичный мозговой центр, ученые которого должны были «придумывать невероятное». Целью RAND были «исследования и развитие», большая часть его проектов была сосредоточена в области национальных ядерных стратегий. В 1940-е и 1950-е годы там какое-то время работали все известные математики США. Нэш познакомил их с семейством стратегических игр, включая «Кригшпиль». Была тщательно изучена логистика войны, были задействованы предохранительные механизмы, чтобы предотвратить любые случайности. Поскольку обе стороны выражали опасения относительно растущего запаса оружия, применение стратегии «зуб за зуб» казалось маловероятным — ядерная игра была одной из тех, в которую можно играть только один раз. Подобная политика привела к сильнейшему напряжению в жизни двух поколений населения мира и их лидеров.

RAND работал скорее как университет, чем как военное агентство, позволяя ученым свободно вести привлекательный для них образ жизни. Здание агентства было открыто круглосуточно. В RAND имелось процветающее издательство. Одной из самых популярных книг, изданных в 1954 году, была книга «Умелый стратег», написанная Джоном Д. Вильямсом, — популярное описание применения теории игр для непрофессионалов. В книге присутствовал столь типичный для этой корпорации черный юмор. Сейчас существует множество других мозговых центров, порожденных успехом RAND, но ни один из них не имел такого мощного коллектива математиков, занятых исключительно абстрактным мышлением.

Терминология, используемая в этих стратегических играх, включает сотрудничество и измену. Позднее теория игр много критиковалась за циничный взгляд на людей как на существ совершенно корыстных и пекущихся только о своей выгоде. Однако последующие исследования показали, что реальные стратегии людей действительно отражают их восприятие относительной пользы. В игре с нулевой суммой ничья оставила бы каждого игрока с теми же деньгами, с которыми он начал ее, но в игре с «ненулевой суммой», типа фондовой биржи, победа и проигрыш относительны, и там игра заключается скорее в получении максимального выигрыша, чем в уничтожении противника. Таким образом, сотрудничество становится более обычным делом, если обе стороны извлекают выгоду из сделки. Хотя поначалу теория игр развивалась довольно медленно, теперь это неотъемлемая часть анализа рыночной экономики. Недавно она была использована в глобальной продаже с аукциона лицензий предприятия коммунального обслуживания частным фирмам, в результате чего был получен очень необходимый доход и открыты новые рынки. Весь глобальный рынок — это сцена, где игроки колеблются между сотрудничеством и соревнованием. Это мир теории игр.

Я собираюсь рассмотреть вопрос: могут ли машины мыслить. Но для этого нужно сначала определить смысл терминов «машина» и «мыслить». Можно было бы построить эти определения так, чтобы они по возможности лучше отражали обычное употребление этих слов, но такой подход таит в себе некоторую опасность. Дело в том, что, если мы будем выяснять значения слов «машина» и «мыслить», исследуя, как эти слова определяются обычно, нам трудно будет избежать того вывода, что значение этих слов и ответ на вопрос «могут ли машины мыслить?» следует искать путем статистического обследования… Однако это нелепо. Вместо того чтобы пытаться дать такое определение, я заменю наш вопрос другим, который тесно с ним связан и выражается словами с относительно четким смыслом.

Эта новая форма может быть описана с помощью игры, которую мы назовем «игрой в имитацию». В этой игре участвуют три человека: мужчина (А), женщина (В) и кто-нибудь задающий вопросы (С), которым может быть лицо любого пола. Задающий вопросы отделен от двух других участников игры стенами комнаты, в которой он находится. Цель игры для задающего вопросы состоит в том, чтобы определить, кто из двух других участников игры является мужчиной (А), а кто — женщиной (В). Он знает их под обозначениями X и Y и в конце игры говорит либо: «X есть А и Y есть В», либо: «X есть В и Y есть А». Ему разрешается задавать вопросы такого, например, рода:

С: «Попрошу X сообщить мне длину его (или ее) волос».

Допустим теперь, что в действительности X есть А. В таком случае А и должен давать ответ. Для А цель игры состоит в том, чтобы побудить С прийти к неверному заключению. Поэтому его ответ может быть, например, таким:

«Мои волосы коротко острижены, а самые длинные пряди имеют около девяти дюймов в длину».

Чтобы задающий вопросы не мог определить по голосу, кто из двух других участников игры мужчина, а кто — женщина, ответы на вопросы следовало бы давать в письменном виде, а еще лучше — на пишущей машинке. Идеальным случаем было бы телеграфное сообщение между двумя комнатами, где находятся участники игры. Если же этого сделать нельзя, то ответы и вопросы должен передавать какой-нибудь посредник. Цель игры для третьего игрока — женщины (В) — состоит в том, чтобы помочь задающему вопросы. Для нее, вероятно, лучшая стратегия — давать правдивые ответы. Она также может делать такие замечания, как «Женщина — я, не слушайте его!», но этим она ничего не достигнет, так как мужчина тоже может делать подобные замечания.

Поставим теперь вопрос: «Что произойдет, если в этой игре вместо А будет участвовать машина?» Будет ли в этом случае задающий вопросы ошибаться столь же часто, как и в игре, где участниками являются только люди? Эти вопросы и заменят наш первоначальный вопрос «могут ли машины мыслить?».

Алан Тьюринг.
Статья «Могут ли машины мыслить?» (1950)
Категория: ИСТОРИЯ МАТЕМАТИКИ. ОТ СЧЕТНЫХ ПАЛОЧЕК ДО БЕССЧЕТНЫХ ВСЕЛЕННЫХ | Просмотров: 858 | Добавил: admin | Теги: развитие математики, зарождение математики, Уроки математики, сайт для учителей математики, Геометрия, математика в школе, Алгебра, история математики | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru