Суббота, 30.11.2024, 08:34
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
МАТЕМАТИЧЕСКИЕ ЗАДАЧКИ-ГОЛОВОЛОМКИ [33]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ АДАМА ХАРТА-ДЭВИСА [85]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ И РАЗВЛЕЧЕНИЯ ГАРДНЕРА [46]
САЛЮТ, МАТЕМАТИКА! [19]
МАТЕМАТИЧЕСКАЯ ЛОГИКА [82]
Главная » Статьи » МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ » МАТЕМАТИЧЕСКАЯ ЛОГИКА

Неожиданные решения задач, требующих умения мыслить последовательно

В этой главе нас будет интересовать не формальная логика, а задачи, для решения которых не нужны особые познания в математике, но необходимо умение мыслить последовательно. Некоторые из предлагаемых нами задач напоминают загадки в том смысле, что содержат умышленно введенные в их условия утверждения, способные «сбить с толку» не слишком проницательного читателя, или решения, основанные на игре слов, но в большинстве случаев мы предлагаем вам честную игру — задачи, которые имеют решение.

В том, как собранные в этой главе различные логические задачи-головоломки относятся к математике, нетрудно усмотреть некую общую тенденцию. Все математические задачи решаются при помощи рассуждений, проводимых в рамках некоторой дедуктивной системы, включающей в себя наряду с другими правилами основные законы логики. Хотя для решения любой задачи из этой главы не требуется знание формальной логики, тем не менее ведущие к решению неформальные рассуждения по существу имеют много общего с теми, которые проводят математики, физики, химики и биологи, сталкиваясь с какой-нибудь трудной проблемой.

Под «трудной проблемой» мы понимаем здесь задачу, подход к решению которой неизвестен. Разумеется, если алгоритм решения существует, то ни о какой по-настоящему трудной проблеме не может быть и речи: достаточно лишь засыпать зерна исходных данных и привести в действие жернова алгоритма, как мы получим ответ. Например, памятная всем формула корней квадратного уравнения говорит нам о том, какие действия и в какой последовательности необходимо произвести над коэффициентами уравнения, чтобы найти его корни.

И в математике, и в естественных науках интересными задачами, бросающими вызов исследователю, принято считать такие, для решения которых не существует готовых методов. Столкнувшись с такой задачей, исследователь долго, а иногда и мучительно размышляет, перебирая в памяти всю информацию, имеющую хотя бы отдаленное отношение к интересующей его теме, в надежде, что удачная догадка подскажет нужное решение. Именно поэтому решение занимательных логических задач служит великолепной тренировкой к решению важных научных проблем.

Некоторые задачи в этой главе связаны с серьезной математикой еще более тесными узами. Например, задача «В костюмах одного цвета» и следующая за ней задача легко решаются табличным методом, аналогичным широко используемому в формальной логике методу таблиц истинности. В одной из этих задач встречается важное логическое отношение — так называемая «материальная импликация». В исчислении высказываний (одном из разделов математической логики, имеющем первостепенное значение) импликацию принято обозначать знаком ⊃ или →. Отношение A ⊃ B означает, что если A истинно, то B должно быть истинно. Одно из возможных истолкований этого логического отношения (на языке теории множеств) гласит: все элементы множества B содержатся в множестве A.

Слово «индукция» имеет по существу два различных значения. Неполная индукция — это процесс восхождения от частного к общему. Ученый, наблюдающий частные случаи (например, замечающий, что некоторые вороны черные), делает общее заключение (о том, что все вороны черные). Это заключение никогда не носит характер достоверного утверждения: вполне возможно, что на свете существует по крайней мере одна белая ворона, которая еще не попадалась на глаза наблюдателю.

Математическая индукция, с которой вы познакомитесь в комментариях к тестам со шляпами в задаче «Аховы награды», представляет собой совершенно иной процесс, хотя и в математической индукции мы имеем дело с восхождением от частного к общему, охватывающему информацию о бесконечной последовательности частных случаев. Математическая индукция — неоценимое средство исследования почти во всех разделах математики.

Большинство задач, собранных в этой главе, по сложности и серьезности уступает задаче о шляпах. Тем не менее и они позволят вам отточить свое остроумие, научат внимательно следить за всякого рода словесными «ловушками», расставленными в условиях задачи, и в особенности оценить преимущества непредвзятого, широкого поиска возможного подхода к решению задачи. Чем больше подходов вы проанализируете, сколь бы причудливыми и экзотическими они ни были, тем больше шансов у вас на успех. В этом один из секретов всех творчески мыслящих математиков.


Категория: МАТЕМАТИЧЕСКАЯ ЛОГИКА | Добавил: admin (08.12.2013)
Просмотров: 1120 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 7
    Гостей: 7
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru