Четверг, 25.07.2024, 03:24
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
МАТЕМАТИЧЕСКИЕ ЗАДАЧКИ-ГОЛОВОЛОМКИ [33]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ АДАМА ХАРТА-ДЭВИСА [85]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ И РАЗВЛЕЧЕНИЯ ГАРДНЕРА [46]
САЛЮТ, МАТЕМАТИКА! [19]
МАТЕМАТИЧЕСКАЯ ЛОГИКА [82]
Главная » Статьи » МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ » МАТЕМАТИЧЕСКАЯ ЛОГИКА

Невразумительное объявление

Проф. Слог. Даю вам еще один шанс выиграть 6 коробок сигар. В одном городке на витрине небольшой гостиницы с рестораном красовался такой плакат.

Проф. Слог. Но когда несовершеннолетние юнцы зашли в ресторан и потребовали спиртные напитки, их вышвырнули вон.

Проф. Слог. По словам владельца гостиницы, художник, написавший плакат, пропустил два восклицательных знака. Расставьте их так, чтобы текст плаката обрел тот смысл, который хотел вложить в него хозяин гостиницы, человек строгих правил и безупречной репутации.

Мистер Рите не справился и с этим заданием. Проф. Слогу пришлось самому расставить восклицательные знаки.

Знаки и знаки препинания

Во многих старинных сборниках забав и развлечений можно найти примеры фраз, смысл которых существенно зависит от того, как расставлены знаки препинания. Вспомним хотя бы знаменитый пример с телеграммой «КАЗНИТЬ НЕЛЬЗЯ ПОМИЛОВАТЬ». От того, где должна стоять пропущенная телеграфистом точка, зависит судьба осужденного.

Головоломки этого типа также имеют многочисленные арифметические аналоги. Взять хотя бы следующее неверное равенство:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 100.

Как сделать его верным, изменив «пунктуацию» в левой части (то есть расставив по-другому плюсы и минусы и, возможно, убрав или добавив пробелы между цифрами)? Одно из возможных решений, использующее только три знака, имеет вид:

123 − 45 − 67 + 89 = 100.

Другое решение потребовало больше плюсов и лишь один минус:

1 + 2 + 3 − 4 + 5 + 6 + 78 + 9 = 100.

Существует всего лишь девять решений:

123 − 45 − 67 + 89 = 100,

123 + 4 − 5 + 67 − 89 = 100,

123 + 45 − 67 + 8 − 9 = 100,

123 − 4 − 5 − 6 − 7 + 8 − 9 = 100,

12 − 3 − 4 + 5 − 6 + 7 + 89 = 100,

12 + 3 + 4 + 5 − 6 − 7 + 89 = 100,

1 + 23 − 4 + 5 + 6 + 78 − 9 = 100,

1 + 2 + 34 − 5 + 67 − 8 + 9 = 100,

12 + 3 − 4 + 5 + 67 + 8 + 9 = 100,

1 + 23 − 4 + 56 + 7 + 8 + 9 = 100,

1 + 2 + 3 − 4 + 5 + 6 + 78 + 9 = 100.

Ту же задачу можно поставить несколько иначе, если потребовать, чтобы цифры шли не в порядке возрастания, а в порядке убывания. Если исключить (как мы делали в предыдущей, задаче) случай, когда знак минус стоит перед первым числом, то задача допускает всего 15 решений:

98 − 76 + 54 + 3 + 21 = 100,

9 − 8 + 7 − 6 − 1 − 54 − 32 + 1 = 100,

98 − 7 − 6 − 5 − 4 + 3 + 21 = 100,

9 − 8 + 7 + 65 − 4 + 32 − 1 = 100,

9 − 8 + 76 − 5 + 4 + 3 + 21 = 100,

98 − 7 + 6 + 5 + 4 − 3 − 2 − 1 = 100,

98 + 7 − 6 + 5 − 4 + 3 − 2 − 1 = 100,

98 + 7 + 6 − 5 − 4 − 3 + 2 − 1 = 100,

98 + 7 − 6 + 5 − 4 − 3 + 2 + 1 = 100,

98 − 7 + 6 + 5 − 4 + 3 − 2 + 1 = 100,

98 − 7 + 6 − 5 + 4 + 3 + 2 − 1 = 100,

98 + 7 − 6 − 5 + 4 + 3 − 2 + 1 = 100,

98 − 7 − 6 + 5 + 4 + 3 + 2 + 1 = 100,

9 + 8 + 76 + 5 + 4 − 3 + 2 − 1 = 100,

9 + 8 + 76 + 5 − 4 + 3 + 2 + 1 = 100.

Если мы условимся ставить минус и перед первым числом, то появится 3 новых решения в том случае, когда цифры расположены в порядке убывания, и одно новое решение, когда цифры расположены в порядке возрастания:

− 9 + 8 + 76 + 5 − 4 + 3 + 21 = 100,

− 9 + 8 + 7 + 65 − 4 + 32 + 1 = 100,

− 9 − 8 + 76 − 5 + 43 + 2 + 1 = 100,

− 1 + 2 − 3 + 4 + 5 + 6 + 78 + 9 = 100.

Разумеется, знаки «пунктуации» не обязательно ограничивать плюсами и минусами, а сумму, стоящую в правой части равенства, числом 100. Сумма может быть равна, например, двум последним цифрам текущего года или любому другому числу, какое вам больше нравится.

Можете ли вы расставить, знаки так, чтобы левая часть «равенства»

1 − 2 − 3 + 4 − 5 + 6 = 5

действительно стала равно 9?

Ответ приведен на сайте, ищите.

Категория: МАТЕМАТИЧЕСКАЯ ЛОГИКА | Добавил: admin (07.12.2013)
Просмотров: 807 | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru