Вторник, 19.03.2024, 14:34
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
МАТЕМАТИЧЕСКИЕ ЗАДАЧКИ-ГОЛОВОЛОМКИ [33]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ АДАМА ХАРТА-ДЭВИСА [85]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ И РАЗВЛЕЧЕНИЯ ГАРДНЕРА [46]
САЛЮТ, МАТЕМАТИКА! [19]
МАТЕМАТИЧЕСКАЯ ЛОГИКА [82]
Главная » Статьи » МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ » МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ И РАЗВЛЕЧЕНИЯ ГАРДНЕРА

Глава 19. ЦИФРОВЫЕ КОРНИ

Запишите номер вашего телефона. Из входящих в него цифр, переставленных в любом порядке, образуйте новое число и вычтите из большего числа меньшее. Сложите все цифры ответа. Среди волшебных знаков (рис. 108) найдите звездочку и поставьте на нее палец.


 

Рис. 108 Волшебные знаки для фокуса с телефонным номером.


Начиная со звездочки (она соответствует числу 1), обходите по часовой стрелке волшебные знаки, прибавляя при каждом шаге по 1 (так, треугольник будет соответствовать 2, три зигзагообразные линии — 3 и т. д.) до тех пор, пока вы не досчитаете до полученной суммы. Ваш счет всегда будет заканчиваться на спирали.

Нетрудно понять, на чем основан этот нехитрый фокус. Он может служить отличным введением в понятие сравнения двух чисел, сформулированное Гауссом. Если два числа при делении на любое заданное число k дают одинаковые остатки, то про такие числа говорят, что они сравнимы по модулю к, а само число k называют модулем сравнения. Например, 16 и 23 при делении на 7 дают остаток 2, следовательно, эти числа сравнимы по модулю 7.

Так как 9 — наибольшая из цифр в десятичной системе счисления, сумма цифр любого числа всегда сравнима по модулю 9 с самим числом. Цифры, которыми записана сумма цифр исходного числа, в свою очередь можно сложить и получить новое, третье число, сравнимое с двумя первыми, и т. д. Продолжая этот процесс, мы в конце концов получим однозначное число — сам остаток.

Например, 4157 при делении на 9 дает остаток 8. Сумма цифр числа 4157 равна 17 и тоже дает при делении на 9 остаток 8. Сумма цифр числа 17 равна 8. Последнее однозначное число, равное самому остатку, назовем цифровым корнем исходного числа. Оно совпадает с остатком от деления исходного числа на 9, если только этот остаток отличен от 0. Для чисел, сравнимых с 0 по модулю 9, цифровой корень равен не 0, а 9.

Вычисление цифрового корня по сути дела есть не что иное, как давно известный прием «вычеркивания девяток». Им широко пользовались для проверки правильности произведенных выкладок еще в те времена, когда электронных вычислительных машин не было и в помине. В некоторых современных быстродействующих компьютерах этот прием используется как один из методов автоматической самопроверки точности вычислений. Он основан на довольно простом факте: какие бы действия мы ни производили над числами в процессе решения задачи (складывали их, вычитали, умножали и даже делили друг на друга), ответ всегда будет сравним по модулю 9 с числом, получающимся при сложении, вычитании, умножении или делении цифровых корней этих же чисел.

Например, если вы хотите быстро проверить, правильно ли вычислена сумма больших чисел, то достаточно взять цифровые корни слагаемых, просуммировать их и сравнить с цифровым корнем ответа, в котором вы сомневаетесь. Если цифровые корни не сходятся, вы сразу же знаете, что где-то вкралась ошибка. Ошибка может быть и в том случае, когда цифровые корни сходятся, однако с большой уверенностью можно утверждать, что вычисления произведены правильно.

Посмотрим, какое отношение имеет все сказанное к фокусу с телефонным номером. Перестановка цифр номера не меняет его цифрового корня, поэтому, вычитая из большего числа меньшее, мы берем разность двух чисел с одинаковыми цифровыми корнями. Такая разность делится на 9 без остатка. Чтобы понять, почему так происходит, представим большее число как некоторое кратное девяти, к которому прибавлен цифровой корень (остаток при делении числа на 9). Меньшее число состоит из меньшего кратного 9, к которому прибавлен тот же самый цифровой корень. При вычитании из большего числа меньшего одинаковые цифровые корни взаимно уничтожаются и остается число, кратное 9:

 

Поскольку ответ кратен 9, его цифровой корень равен 9. Сумма цифр полученной разности меньше самой разности, а ее цифровой корень также равен 9, поэтому окончательный ответ заведомо кратен 9. На нашей схеме имеется всего 9 волшебных знаков. Начав счет с первого, мы всегда должны окончить его на последнем, девятом знаке.

Цифровые корни часто позволяют быстро и просто решать задачи, которые при ином подходе кажутся необычайно трудными.

Предположим, например, что вам нужно найти наименьшее из чисел, запись которых состоит из одних лишь нулей и единиц, делящееся без остатка на 225. Цифровой корень числа 225 равен 9, поэтому вы сразу же знаете, что искомое число должно иметь цифровой корень, равный 9. Наименьшее из чисел, записанных с помощью одних лишь единиц и имеющих цифровой корень 9, очевидно, равно 111 111 111. Дописывая нули, мы лишь увеличиваем число, но не изменяем его цифровой остаток. Наша задача заключается в том, чтобы, увеличив число 111 111 111 как можно меньше, превратить его в кратное 225. Поскольку число 225 делится на 25, искомое число также должно быть кратно 25. Все кратные 25 оканчиваются цифрами 00, 25, 50 или 75. По условию задачи в записи числа разрешается использовать только нули и единицы, поэтому числа, оканчивающиеся цифрами 25, 50 и 75, отпадают. Следовательно, к 111 111 111 справа нужно приписать 00. Это и дает ответ задачи: 11111111100.

Понятие цифрового корня позволяет проанализировать и многие математические игры, например следующую игру в кости.

Играют вдвоем. Прежде всего задумывают какое-нибудь число (чтобы игра была интересной, обычно берут число, большее 20).

Первый игрок бросает кость. Число очков, выпавшее на верхней грани, запоминают, после чего второй игрок поворачивает кость одной из боковых граней вверх и прибавляет значащееся на ней число к уже набранным очкам. Игроки продолжают переворачивать кость и добавлять число, оказывающееся на верхней грани, к текущему счету до тех пор, пока кто-нибудь из них либо дойдет до задуманного числа, либо заставит своего противника превысить его. Анализ игры затрудняется тем, что числа на боковых гранях зависят от положения кости и изменяются, когда кость переворачивают. Можно ли указать оптимальную стратегию, которой следует придерживаться в игре?

Ключом к оптимальной стратегии служат числа, имеющие те же цифровые корни, что и задуманное число. Если вы сможете так изменить счет игры, чтобы он совпал с одним из таких чисел, или сумеете постоянно препятствовать аналогичному намерению своего противника, то вас непременно ожидает выигрыш. Поясним сказанное на примере. Предположим, что противники условились вести игру до 31 очка. Цифровой корень числа 31 равен 4. Единственный способ выиграть для первого игрока заключается в том, чтобы при бросании кости получить на верхней грани 4 очка, а при последующих ходах стараться либо довести счет до одного из чисел 4—13–22—31, либо помешать противнику сделать то же самое.

Вторая задача несколько труднее, и мы не будем останавливаться на ней подробно. Скажем лишь, что добиться проигрыша противника можно, либо бросая кость так, чтобы пятерка оказалась на нижней или верхней грани, и доводя затем счет до чисел 8—17–26, либо бросая кость так, чтобы на верхней или нижней грани выпала четверка, и стараясь довести счет до одного из чисел, встречающихся в следующих трех последовательностях: 9—18–27, 1—10–19—28 и 5-14-23.

Если не считать случая, когда цифровой корень задуманного числа равен 9, всегда существует одно или несколько положений игральной кости, при которых выигрыш первого игрока обеспечен.

Если же задуманное число кратно 9 (и, следовательно, его цифровой корень равен 9), то победы всегда может добиться второй игрок.

При случайном выборе числа, до которого ведется счет игры, шансы на победу у второго игрока намного выше, чем у первого.

Предположим, что максимальный счет определяется по выбору первого игрока. Каким в этом случае должен быть цифровой корень задуманного числа, для того чтобы шансы на выигрыш у первого игрока были как можно более высокими?

Многие из карточных фокусов, для показа которых не требуется особой ловкости рук, зависят от свойств цифровых корней.

Лучшим из них, по моему мнению, следует считать фокус Стюарта Джеймса «Предсказание будущего». Джеймс известен как блестящий мастер по придумыванию карточных фокусов, основанных на тонких математических идеях.

Из тщательно перетасованной колоды вы выбираете девять карт — от туза до девятки — и располагаете их по порядку так, чтобы туз оказался сверху. Показав карты зрителям, вы заявите, что сейчас разделите отобранные девять карт так, что никто не сможет с уверенностью сказать, где находится та или иная карта. Держа девять карт вверх рубашкой, вы делаете вид, что наугад разбиваете их на две части, а на самом деле перекладываете наверх три нижние карты, после чего ваши девять карт расположатся так (мы называем карты по порядку, сверху вниз; 1 соответствует тузу): 7-8-9-1-2-3-4-5-6.

Медленно снимая по одной карте из тех девяти, что вы держите в руках (каждый раз вы берете верхнюю карту), вы кладете их поверх большой колоды, лежащей перед вами на столе. При этом каждый раз, сняв очередную карту, вы спрашиваете зрителя, не желает ли он ее выбрать (зритель должен выбрать по своему усмотрению одну из девяти карт). Когда зритель укажет выбранную им карту, вы оставляете ее сверху тех карт, которые еще не успели выложить на стол, и откладываете их в сторону.

Попросите теперь зрителя снять верхнюю часть большой колоды. Подсчитав число карт в снятой и оставшейся частях колоды, найдите цифровые корни полученных вами чисел. Сложите оба цифровых корня и, если результат окажется больше 9, замените их сумму ее цифровым корнем. Откройте теперь выбранную зрителем карту (самую верхнюю из отложенных вами карт). Ее значение в точности совпадает с полученным вами результатом и позволяет предсказывать его заранее!

Объясняется фокус очень просто. После того как вы отобрали девять карт, расположили их по порядку и переложили три нижние карты наверх, самой верхней из девяти карт будет семерка. В колоде останутся 43 карты. Цифровой корень числа 43 равен 7. Если зритель не выберет семерку вы возвращаете ее в колоду, увеличивая тем самым число карт в ней до 44. После этого верхней картой у вас в руках становится 8, и цифровой корень числа 44 также равен 8. Иначе говоря, какую бы карту зритель ни выбрал, ее значение всегда совпадает с цифровым корнем числа карт в колоде. Разбиение колоды на две части, подсчет числа карт в каждой из них и другие описанные выше действия, разумеется, приводят к числу, совпадающему с цифровым корнем числа всех карт в колоде.

* * *

В начале этой главы было сказано, что поскольку основанием нашей системы счисления служит число 10, то цифровой корень любого числа совпадает с остатком при делении этого числа на 9.

Это утверждение нетрудно доказать. Некоторых читателей, может быть, заинтересует неформальный набросок этого доказательства.

Рассмотрим какое-нибудь четырехзначное число, например 4135. Его можно записать в виде суммы степеней числа 10:

(4 ∙ 1000) + (1 ∙ 100) + (3 ∙ 10) + (5 ∙ 1).

Вычитая по 1 из каждой степени 10, то же число можно представить в виде:

(4 ∙ 999) + (1 ∙ 99) + (3 ∙ 9) + (5 ∙ 0) + 4 + 1 + 3 + 5.

Все выражения в скобках кратны 9. Отбросив их, мы получаем сумму цифр исходного числа: 4+1+3 + 5.

В общем случае четырехзначное число abed представимо в виде

(а ∙ 999) + (Ь ∙ 99) + (с ∙ 9) + (d ∙ 0) + а + Ь + с + d,

и поэтому после вычеркивания чисел, кратных 9, должна оставаться сумма a+b+c+d. Разумеется, эта сумма не обязательно должна выражаться однозначным числом, но, записав ее так же, как исходное число, и вычеркнув все кратные 9, мы всегда можем найти ее остаток при делении на 9 и т. д. до тех пор, пока не получим однозначное число — цифровой корень. Сказанное справедливо для любого числа, как бы велико оно ни было. Поэтому цифровой корень — это число, которое остается после того, как из исходного числа вычеркнуто максимальное число девяток, то есть после деления исходного числа на 9.

Цифровые корни часто используют для того, чтобы убедиться, что какое-нибудь очень большое число не является совершенным квадратом или кубом. Все квадраты имеют цифровые корни 1, 4, 7 или 9, а их последними цифрами могут быть 2, 3, 7 или 8. Кубы могут оканчиваться на любую цифру, но их цифровыми корнями могут быть только 1, 8 или 9. Самое любопытное, что четные совершенные числа (а до сих пор не было найдено ни одного нечетного совершенного числа) должны оканчиваться цифрой 6 или 8. Если отбросить наименьшее совершенное число 6, то у всех остальных совершенных чисел цифровой корень равен 1.


Ответы

Если при игре в кости число, до которого ведется счет, выбирает первый игрок, то ему лучше всего остановить свой выбор на каком-нибудь числе с цифровым корнем, равным 7. Как следует из приведенной здесь таблицы, именно при 7 выигрыш первого игрока обеспечен (при правильной игре) в трех случаях из шести возможных, то есть с вероятностью 1/2 при первом бросании на кости выпадает столько очков, сколько нужно первому игроку для выигрыша. При всех других цифровых остатках шансы первого игрока на победу хуже.


 

Категория: МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ И РАЗВЛЕЧЕНИЯ ГАРДНЕРА | Добавил: admin (25.01.2014)
Просмотров: 1334 | Теги: задачи для олимпиады по математике, задачи по математике повышенной сло, математические головоломки, трудные задачи по математике с реше | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 6
    Гостей: 6
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru