Понедельник, 20.11.2017, 08:53
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ЧИСЛОВАЯ СИМВОЛИКА СРЕДНЕВЕКОВЬЯ [9]
ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА [38]
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Главная » Файлы » ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ » ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА

Незадача с Птолемеем
06.05.2016, 16:08

Первую известную нам попытку доказать постулат параллельности произвел Птолемей — во втором веке н. э. . Аргументацию он применил довольно изощренную, но в сути метод оказался прост: он допустил видоизмененную форму постулата и из нее вывел исходный. И что прикажете думать о Птолемее? Он, что ли, жил на территориях, свободных от здравого смысла? Или нам представить, как он несся к друзьям с воплями: «Эврика! Я открыл новый вид доказательства — замкнутого на само себя!»? Математики наступать на эти грабли не стали дважды — они наступали на них снова и снова: как выяснилось, некоторые самые безобидные допущения и кое-какие очевидные настолько, что их оставили недоказанными, оказались замаскированным постулатом параллельности. Связь этого постулата со всей остальной евклидовой теорией столь же тонка, сколь и глубока. Через пару сотен лет после Птолемея Прокл Диадох сделал вторую знаменательную попытку доказать постулат раз и навсегда. Прокл в V веке учился в Александрии, после чего перебрался в Афины, где возглавил Платоновскую академию. Он часами корпел над трудами Евклида. У него был доступ к книгам, давным-давно исчезнувшим с лица Земли, — например, к «Истории геометрии» Евдема, современника Евклида. Прокл написал комментарии к первой книге «Начал», и они стали источником большой части нашего знания о древнегреческой геометрии.

Чтобы разобраться в доказательстве Прокла, полезно сделать три вещи: во-первых, рассматривать альтернативную формулировку постулата, приведенного выше, — аксиому Плейфэра; во-вторых, сделать доказательство Прокла чуточку менее техническим; в-третьих, перевести его с греческого. Аксиома Плейфэра звучит так:

В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.

Большинству из нас в современном мире куда понятнее карты и планы улиц, нежели прямые, обозначенные загадочными символами а или X . Поэтому давайте-ка рассмотрим доказательство Прокла в более привычных обстоятельствах — скажем, на примере Пятой авеню в Нью-Йорке. Представим еще одну авеню, параллельную Пятой, и назовем ее Шестой. Не забываем, что под параллельностью, по Евклиду, мы подразумеваем их «непересекаемость», т. е. Пятая авеню не пересекает Шестую.

Высоко над кофейнями и лотками с хот-догами возносится почтенное здание, в котором размещается уважаемое издательство самых качественных на свете книг — «Фри Пресс» (по совпадению — первый издатель этой). Никоим образом не принижая заслуг «Фри Пресс», назначим его на роль «точки, не лежащей на данной прямой».

Затем, в точном соответствии с математической традицией, запомним, что нашими допущениями об этих улицах будут только факты, которые мы упомянули выше. Хотя в целях предметного иллюстрирования доказательства мы имеем в виду именно эти две авеню, как математики мы не можем включать в наше доказательство те свойства этих авеню, которые заранее не оговорили. Если вам известен другой издатель (неудачник — в отношении этой книги, по крайней мере) под названием «Рэндом Хаус», размещающийся дальше по улице, а также что Пятая и Шестая авеню отстоят друг от друга на некоторое расстояние, и что на некоем перекрестке там обитает слюнявый псих, выбросьте это все из головы. Математическое доказательство — упражнение в применении лишь исчерпывающе предложенных фактов, а в евклидовых «Началах» никакие особые свойства Нью-Йорка не значатся. Подобное неоправданное допущение вы, может, сделали бы, не задумываясь, и оно превратило бы все последующие доводы Прокла в ложные.

Итак, мы готовы сформулировать аксиому Плейфэра в предложенных нами терминах:

В плоскости Нью-Йорка через издательство «Фри Пресс», не размещающееся на Пятой Авеню, проходит одна и только одна авеню, параллельная Пятой, т. е. Шестая.

Это утверждение не в точности повторяет аксиому Плейфэра, поскольку мы, как и Прокл, допускаем, что существует хотя бы одна прямая — или улица (Шестая авеню) — параллельная данной (Пятой авеню). Это, вообще-то, еще требуется доказать, но Прокл интерпретировал одну из евклидовых теорем как гарантию этого факта. Примем это допущение и мы, и поглядим, можно ли, следуя логике Прокла, доказать аксиому в предложенной формулировке.

Чтобы доказать этот постулат, т. е. превратить его в теорему, необходимо продемонстрировать, что любая улица, проходящая через «Фри Пресс» и при этом не Шестая Авеню, непременно пересекает Пятую. Вроде бы это очевидно и следует из нашего повседневного опыта — именно поэтому такая улица и называется поперечной. Нам всего-то и надо, следовательно, доказать это без применения постулата параллельности. Начнем с того, что представим некую третью улицу, у которой лишь одно свойство: она прямая и проходит через «Фри Пресс». Назовем ее Бродвеем.

В своем доказательстве Прокл начал бы с того, что двинулся бы от «Фри Пресс» вдоль Бродвея к центру города. Вообразим улицу, идущую от того места Шестой авеню, где остановился Прокл, и перпендикулярную этой самой Шестой авеню. Назовем ее Николай-стрит, см. рисунок на следующей странице.

Николай-стрит, Бродвей и Шестая авеню образуют прямоугольный треугольник. По мере продвижения Прокла в центр города этот треугольник становится все больше.

Доказательство Прокла

Стороны этого треугольника, включая Николай-стрит, могут стать сколь угодно длинными. Отдельно отметим, что протяженность Николай-стрит постепенно сделается больше расстояния между Пятой и Шестой авеню. Следовательно, сказал бы Прокл, Бродвей пересечет Пятую авеню — что и требовалось доказать.

Доказательство это простое, но ложное. Для начала в нем есть малозаметное ошибочное использование концепции «все больше». Николай-стрит может, конечно, удлиняться дальше, но так и не стать длиннее одного квартала, как ряд чисел 1/2, 2/3, 3/4, 4/5, 5/6…, который все отрастает, но так и не переваливает за единицу. Этот недостаток можно исправить. Как и Птолемей, Прокл сделал необоснованное допущение. Он применил свойство параллельных дорог, которое интуитивно зримо, но никак им не доказано. Каково же это допущение?

Ошибка Прокла — в том, что он применил формулировку «Пятая и Шестая авеню отстоят друг от друга». Вспомните наше предупреждение: «…если вам известно… что Пятая и Шестая авеню отстоят друг от друга на некоторое расстояние… выбросьте это все из головы». И хотя Прокл не уточняет, на каком именно расстоянии находятся эти две улицы, он утверждает, что это расстояние постоянно. Таков наш жизненный опыт в отношении параллельных прямых — и Пятой и Шестой авеню, но его никак нельзя математически доказать, не ссылаясь на постулат параллельности, ибо это он и есть.

В сходном тупике оказался и великий багдадский ученый IX века Сабит (Табит) ибн Курра. Его логику можно постичь, вообразив, как Сабит прогуливается по прямой вдоль Пятой авеню, держа мерный шест длиной в один нью-йоркский квартал перпендикулярно той же Пятой авеню. Идет Сабит вдоль Пятой авеню, а конец его мерного шеста какую описывает траекторию? Сабит утверждал, что эта траектория — прямая линия, допустим, Шестая авеню. Из этого допущения Сабит и «доказывал» постулат параллельности. Линия, описываемая дальним концом мерного шеста, — определенно некоторая кривая, но на каком основании можем мы утверждать, что она есть прямая линия? Выясняется, что единственным основанием для этого утверждения является — совершенно верно! — постулат параллельности. Лишь в евклидовом пространстве набор точек, равноудаленных от некоторой прямой, есть прямая. Сабит, таким образом, повторил ошибку Птолемея.

Рассуждения Сабита касаются глубоких аспектов самого понятия пространства. Евклидова система геометрии зависит от возможности двигать фигуры и накладывать их одну на другую. Именно так проверяется конгруэнтность, или эквивалентность, геометрических фигур. Вообразите, что перемещаете треугольник. Естественный способ произвести такое перемещение — взять каждую из трех его сторон, являющихся сегментом прямой линии, и сдвинуть на одно и то же расстояние в одном и том же направлении. Но если набор точек, равноудаленных от данной прямой, не есть прямая, стороны смещенного треугольника перестанут быть прямыми. В процессе движения фигура исказится. А может ли пространство действительно иметь такое свойство? К сожалению, вместо того, чтобы довести это рассуждение до чудесных мест, в которые оно вело, Сабит интерпретировал угрозу искажения как «доказательство», что его допущение о равноудаленности прямых обоснованно.

Вскоре после Сабита исламская поддержка наук иссякла. Один провинциальный ученый жаловался даже, что там, где он жил, узаконили убийство математиков. (Скорее всего, это произошло не от общего презрения к умникам, а оттого, что математики имели привычку изучать астрологию, а ее, так уж исторически сложилось, частенько связывали с черной магией и считали опасной, а не милой безделицей, как сейчас.)

Порядковый номер года по христианскому календарю почти удвоился, когда геометрические труды Сабита и его последователей, наконец, воскресли. Это случилось в 1663 году, когда английский математик Джон Валлис прочитал лекцию, в которой цитировал одного из преемников Сабита — Насира ад-Дина ат-Туси.

Валлис родился в Эшфорде, графство Кент, в 1616 году. Когда ему было пятнадцать, он застал брата за чтением книги по арифметике и сам сильно увлекся этим предметом. И математику не предал, хотя изучал богословие в кембриджском Эммануэл-Колледже, а в 1640 году был рукоположен в священники. На дворе стояли времена, обычно называемые Английской гражданской войной: между королем Карлом I и Парламентом происходили распри с религиозным подтекстом. Валлис преуспел в криптографии — разделе математики, связанном с расшифровкой сообщений; он помогал парламентариям. Говорят, за эти заслуги он и получил в 1649 году в Оксфорде Савилианскую кафедру геометрии, после того как его предшественника Питера Тёрнера сместили за роялистские взгляды. Как бы то ни было, Оксфорду такая замена пошла только на пользу.

Тёрнер всегда был просто-напросто дружком архиепископа кентерберийского и вечно описывал квадратуры в правильных политических кругах, но за всю жизнь не опубликовал ни одной математической работы. Валлис же стал ведущим английским математиком доньютоновской эпохи и повлиял на самого Ньютона. Ныне даже не-математики — особенно те, что разъезжают на известной марке дорогого автомобиля, — знакомы с хотя бы одним аспектом его трудов: Валлис ввел символ , обозначающий бесконечность.

Валлис предложил преобразовать евклидову геометрию заменой ужасного постулата параллельности другой формулировкой, интуитивно понятной. Примерно такой:

Треугольник с любыми длинами любых сторон можно увеличивать и уменьшать как угодно, изменяя длины сторон, но углы при этом останутся неизменны.

Допустим, у нас есть треугольник, у которого все углы равны 60°, а стороны — единичной длины; можно предположить, что существует другой треугольник, у которого углы тоже равны 60°, но стороны при этом какие угодно: 10, 10, 10 или 1/10, 1/10, 1/10 или 10 000, 10 000, 10 000. Такие треугольники — с пропорционально меньшими или большими сторонами, но с равными соответствующими углами — называются подобными. Если принять аксиому Валлиса, тогда, за вычетом пары преодолимых технических затруднений, постулат параллельности легко доказуем с применением логики, похожей на Проклову. «Доказательство» Валлиса математиками так и не было принято, потому что оно есть, по сути, подмена одного постулата другим. Однако, если мы проследуем логике Валлиса в обратную сторону — придем к изумительному результату: если существует пространство, в котором постулат параллельности недействителен, то подобных треугольников не существует.

Ну и кому какое дело? А вот и нет: треугольники-то повсюду. Рассеките треугольник по диагонали — получите два треугольника. Уприте руку в бок — форма, образуемая при этом вашей рукой и боком, есть треугольник. В самом деле: хоть каждое тело и обладает уникальной формой, любое можно смоделировать при помощи сетки треугольников — с достаточной точностью; именно так устроена трехмерная компьютерная графика. А если подобных треугольников не существует, многие наши повседневные допущения не соответствуют действительности. Взгляните на симпатичный дамский костюм в каталоге одежды: вы ожидаете, что к вам прибудет экземпляр, подобный приведенному в каталоге, пусть даже и в десятки раз больше. Летите любимыми авиалиниями: вы предполагаете, что форма крыла, вполне пригодная для полета авиамоделей, имеет те же дивные свойства и у здоровенного самолета. Наймите архитектора, чтобы тот пристроил к вашему дому парочку дополнительных комнат: вы рассчитываете, что достраиваемые помещения соответствуют архитектурным чертежам. В неевклидовом пространстве этим ожиданиям никак не оправдаться. Ваши одежда, самолет и новая спальня претерпят искажения.

Быть может, такие странные пространства математически и существуют, но могут ли быть такие свойства у реального пространства? Мы бы ведь заметили, правда? Может, и нет. Отклонение в 10 % в форме вашей улыбки ваша мама, вероятно, заметит, а вот в 0,0000000001 % — скорее всего, нет. Неевклидовы пространства — почти евклидовы для маленьких фигур, а мы с вами живем в довольно маленьком углу Вселенной. Как и в квантовой теории, где законы физики принимают странные новые формы, лишь в мирах куда меньших, чем те, с которыми мы имеем дело ежедневно, может существовать искривленное пространство, но оно столь похоже на евклидово, что в масштабах обычной земной жизни мы не заметим разницу. И все-таки — как и в квантовой теории — последствия кривизны для физических теорий могут быть колоссальными.

К концу XVIII века, если бы математики взглянули на свои открытия по-другому, они бы заключили, что неевклидовы пространства существовать могут, а если так, у них могут быть кое-какие странные свойства. Однако вместо этого математики продолжили огорчаться из-за невозможности доказать, что эти странные свойства приводят к противоречиям, а значит, пространство — все-таки евклидово.

Следующие пятьдесят лет революция происходила тайно. Постепенно, за несколько столетий, были открыты новые виды пространств, но о них математическое сообщество либо умалчивало, либо их не замечало. До тех самых пор, пока ученые в середине XIX века не взялись разбираться с бумагами незадолго до этого почившего в бозе старика из немецкого Гёттингена, — тогда-то и открылись секреты неевклидова пространства. К тому времени большинство тех, кто открыл эти пространства, включая старика-немца, поумирало.

Категория: ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА | Добавил: admin | Теги: развитие математики, Уроки математики, начало математики, история геометрии, сайт для учителей математики, математика в школе, история математики
Просмотров: 160 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ

ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск
Copyright MyCorp © 2017
Яндекс.Метрика Рейтинг@Mail.ru