Понедельник, 20.11.2017, 08:52
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ЧИСЛОВАЯ СИМВОЛИКА СРЕДНЕВЕКОВЬЯ [9]
ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА [38]
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Главная » Файлы » ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ » ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА

Относительно евклидов подход
06.05.2016, 15:41

В двух статьях, опубликованных в «Annalen der Physik» в 1905 году, — «К электродинамике движущихся тел» от 26 сентября, и «Зависит ли масса тела от содержащейся в нем энергии?», изданной в ноябрьском номере, — Эйнштейн объяснил свою первую — специальную — теорию относительности.

В гимназические дни Эйнштейн открыл для себя книгу о Евклиде. В отличие от Декарта и Гаусса, Эйнштейн стал поклонником античного ученого: «Там нашлись такие утверждения, как, например, пересечение трех высот треугольника в одной точке, которые, какими бы неочевидными ни были, могут быть доказаны с такой доподлинностью, что не остается места никаким сомнениям. Эта ясность и определенность произвели на меня неописуемое впечатление». Парадоксально, однако в позднейших теориях Эйнштейна ключевую роль играет неевклидова геометрия. Но в специальной теории относительности Эйнштейн применил подход Евклида. Он основывал свои рассуждения на двух аксиомах о пространстве:

1. Невозможно определить, не прибегая к сопоставлению с другими телами, покоитесь ли вы или находитесь в равномерном движении.

Первую аксиому Эйнштейна, обычно именуемую принципом относительности (Галилея), впервые постулировал Орем. Она истинна даже в пределах ньютоновой теории. Однажды Николай катался по квартире на пластмассовой пожарной машине. Алексей, поглощенный чтением какого-то детского ужастика, сидел на стуле в нашей проезжей кухне. Проносясь мимо, Николай выставил пластиковый топор, предусмотрительно приобретенный вместе с машиной и шлемом. Топор вышиб книгу у Алексея из рук, и вместе они — топор и книга — упали, спровоцировав братьев на традиционные взаимные обвинения. Алексей заявил, что это проезжавший мимо Николай воткнул в него топор и сбил книгу на пол. Николай же утверждал, что он держал топор неподвижно, а Алексей на него налетел. Отец обоих, предпочтя не влезать в юридические разбирательства, разразился лекцией о научной стороне ситуации.

Законы Ньютона предсказывают одни и те же события и в случае статичности Николая и подвижности книги Алексея, и в случае статичности Алексея и подвижности топора Николая. Таков первый постулат Эйнштейна: невозможно отличить первое от второго, и поэтому позиция обоих мальчиков в равной степени легитимна. (Досталось обоим.)

2. Скорость света не зависит от скорости его источника и одинакова для всех наблюдателей во Вселенной.

Вторая аксиома Эйнштейна, как и первая, тоже не революционна. Как мы уже видели, уравнения Максвелла требуют, чтобы скорость света не зависела от источника, и это никого не беспокоило, поскольку таково нормальное поведение распространяющихся волн. Соль допущения Эйнштейна — именно во второй части формулировки: «…и одинакова для всех наблюдателей». Что это значит?

Если бы вы могли утверждать, что движетесь, это ничего бы не значило: все наблюдатели могли бы согласиться, что скорость света есть скорость, с которой он приближается к «покоящемуся» объекту. Так обстоят дела в рамках законов Ньютона: пространство, или эфир, абсолютны и являются системой отсчета, относительно которой может быть измерено любое движение. Но если невозможно отличить покой от равномерного движения, все наблюдатели меряют одну и ту же скорость приближающегося света, находятся они сами в движении или нет, — и тут-то мы и натыкаемся на тот самый парадокс с плевками, о котором уже говорили. Как же может свет приближаться и к вам, и к вашему плевку с одинаковой скоростью?

Чтобы понять такое поведение света, следует задаться вопросом, что стоит за нашими рассуждениями. Если станем принимать эти две аксиомы Эйнштейна, кхм, аксиоматически, вопросов у нас не может быть. А какие еще допущения мы сделали? Мы прочно оперлись на понятие одновременности, поэтому естественно разобраться именно с ним. Вот этим Эйнштейн и занялся.

Рассмотрим ситуацию, похожую на ту, что сам Эйнштейн в 1916 году осмыслил в своей книге «Относительность». Эйнштейну нравилось применять аналогии с железной дорогой: опыт катания на поездах обеспечил ему очевиднейшее практическое доказательство невозможности определить, находишься ли ты в равномерном движении. Всякий, кому доводилось ездить по железной дороге или в метро, вероятно, имеет тот же опыт, что получил Эйнштейн в свое время: невозможно понять, твой вагон движется, соседний или оба. В нашем примере Алексей и Николай размещаются на разных концах вагона метро. Они впервые катаются на метро одни, без родителей. Родители стоят на платформе и машут им, надеясь, что знаки «Вагон неисправен», которые они наклеили на окна, до некоторой степени уберегут детей от толчеи. Положим, мама с папой стоят на платформе на таком же расстоянии друг от друга, что и Алексей и Николай, и тем самым вскоре после отправления состава, мама поравняется с Алексеем, а папа — с Николаем. Они расположились так неспроста: у них с собой фотоаппараты. Маме хочется запечатлеть первую поездку сыновей, а папе — иметь подходящие снимки для полиции, на случай, если дети не вернутся к назначенному сроку. Смиряясь перед законом природы, именуемым братским соперничеством, мама и папа собираются сделать снимки в один и тот же миг: мама сфотографирует улыбающегося Алексея, а папа — Николая. А раз фото одновременные, ни одному сыну не удастся потом хвастаться, что его фото сделали первым. И все-таки обстоятельства готовят семье братскую междоусобицу.

Причина этой распри — в ответе на простой вопрос, поставленный Эйнштейном: два события, которые считают одновременными родители, сочтут ли таковыми дети? Наша первая загадка такова: что именно значит оборот «два события происходят одновременно»? Если два события происходят в одном и том же месте, ответ тривиален: они одновременны, если происходят в одно и то же время (замеренное по часам, находящимся в этом месте). А вот если эти события происходят не в одном и том же месте, ответ получается совсем не тривиальным и для понимания требует подлинной проницательности.

Предположим, свет (или что угодно еще, чем можно отправить сигнал) движется с бесконечной скоростью. Тогда в миг, когда сработали обе фотовспышки, их свет мгновенно достиг Алексея и Николая. Они в таком случае могли бы запросто ответить на вопрос об одновременности, сравнив события в некоторой точке, в данном случае — время достижения светом от вспышек его точек назначения. Если они увидели сначала одну вспышку, значит, ту фотографию сделали первой. Однако поскольку свет перемещается не с бесконечной скоростью, этот подход не сработает. У папы, главного ученого в семье, возникает предложение. Он устанавливает фотодетекторы вдоль дистанции между ним и мамой. Если снимки делаются в одно и то же время, свет вспышек должен пересечься строго посередине между ними. Николай, услышав это соображение, тут же его присваивает (такая вот у него милая привычка). Алексей устанавливает фотодетекторы в их с Николаем вагоне.

Поезд трогается. Мама и папа синхронизировали часы. Снимки сделаны. Да, световые лучи от вспышек пересекаются ровно на полпути между мамой и папой. Довольны ли Алексей с Николаем? Нет — потому что когда лучи вспышек пересекаются, их вагон уже проехал чуточку дальше, поэтому, если смотреть из вагона, лучи вспышек пересеклись не строго посередине. Всю эту историю иллюстрирует рисунок на следующей странице.

С точки зрения сыновей каждая вспышка есть событие, происходящее в их мире, т. е. в вагоне метро, который они оправданно воспринимают в покое. Как и их родители, они не видят причин, почему свет от вспышек не должен перекрыться на полпути между ними. И поэтому когда свет вспышек перекрывается ближе к Алексею, оба делают вывод, что Николая сфотографировали первым. И хотя родители синхронизировали вспышки, фотографирование не воспринимается синхронным в системе отсчета, которая движется относительно их самих. Отец теперь корит себя, что не придумал иначе — так, чтобы вспышки произошли одновременно не для них с мамой, а для детей.

Ну хорошо, все понятно, скажете вы, но кому тут мы голову морочим? В заданных условиях именно дети перемещаются, а родители находятся на неподвижной платформе. Так может казаться, потому что Земля представляется нам неподвижной, но это, само собой, не так. Представьте наблюдателя в космосе: Земля для него вращается вокруг Солнца и вокруг своей оси, и поэтому допущения, что либо поезд, либо платформа так или иначе можно считать «покоящимися», имеют очевидные ограничения. Или вот что: отбросим всякие декорации и представим детей и родителей в пустом пространстве. Теперь у нас действительно нет внешнего ориентира для определения, кто же движется. Эффект совершенно тот же — и он подлинный: то, что родители воспринимают как одновременное, таковым не видится детям, и наоборот.

Потеха в метро

С отменой одновременности возникает относительность времени и пространства. Чтобы убедиться в этом, достаточно лишь заметить, что для измерения длины чего угодно нам необходимо сначала отметить концевые точки измеряемого объекта, а затем приложить к нему мерную линейку. Если объект по отношению к нам покоится, эта задача тривиальна. А если объект движется, потребуется промежуточный шаг. Мы могли бы, например, отмерить две концевые точки на неподвижном объекте — на покоящемся листе бумаги, скажем, пока объект перемещается вдоль этого листа. Затем, как и в первом случае, можно приложить линейку и померить расстояние между двумя нашими отметками. Однако делать эти отметки нам придется — ох уж это гнусное словечко! — одновременно. Если же мы ошибемся и сделаем одну отметку раньше второй, конец нашего объекта переместится на некоторое расстояние и полученные размеры не будут истинными. К сожалению, когда мы производим то, что считаем одновременными замерами, человек, движущийся вместе с измеряемым объектом, таковыми их считать не станет. Он обвинит нас в том, что мы отметили один конец прежде другого и тем самым получили неверный результат. Это означает, что у объектов нет длин в абсолютном смысле слова. Их длина зависит от наблюдателя. А это уже совсем иная геометрия.

Часто говорят, что в теории относительности движущиеся объекты воспринимаются как сжатые в направлении их движения. Это означает, что объект, измеряемый наблюдателем, считающим объект движущимся, будет воспринят как более короткий, нежели в случае наблюдателя, который считает объект неподвижным. Эйнштейн обнаружил аналогичные аномалии и в поведении времени. Движущиеся относительно друг друга наблюдатели не договорятся о длинах или интервалах времени или о том, сколько времени прошло. Подобно пространственным, и временные промежутки не имеют абсолютного значения.

Время, которое наблюдатель отмеряет между двумя событиями, находясь на одном месте, — что в его системе отсчета есть фиксированная точка пространства, — называется собственным временем. Любой другой наблюдатель, находящийся в движении (с постоянной скоростью) относительно первого, воспримет временной интервал между двумя событиями как больший. Поскольку относительно себя самих мы всегда находимся в покое, время нашей жизни, измеряемое другими, всегда дольше, нежели его воспринимаем мы сами (фактор общего ускорения жизни в расчет принимать не будем). Другим кажется, что наши часы отстают. Но мы, увы, умрем по сигналу внутреннего таймера, который движется вместе с нами. В специальной теории относительности трава на соседской лужайке и впрямь зеленее.

Что это означает применительно к законам движения? В специальной теории относительности объекты все еще подчиняются первому закону Ньютона: они движутся по прямой, если на них не действует внешняя сила. Наблюдатели могут не соглашаться в том, какой длины тот или иной сегмент этой самой прямой, — но не в том, что она, в принципе, прямая. Однако это пока и не «релятивистская формулировка» первого закона: в теории относительности для разных наблюдателей пространство и время по-разному взаимодействуют друг с другом. Для того, чтобы и пространство, и время оказались охвачены одной теорией, понятия геометрии необходимо видоизменить.

Вместо точек в пространстве и времен событий нам придется формализовать понятие события, иными словами — ввести точки в четырех измерениях пространства-времени. Мы теперь говорим не о траекториях в пространстве, а о мировых линиях в пространстве и времени. Отныне у нас не расстояния, а комбинация временного интервала и пространственных расстояний между событиями. А вместо прямых — геодезические линии, определяемые (по техническим причинам) как кратчайшие или длиннейшие мировые линии, соединяющие два события. Вот вам типичный пример события: автор этой книги сидит в определенной точке пространства, т. е. за своим столом, в определенное время. Типичная мировая линия: писатель торчит за своим столом по многу часов подряд. Эта конкретная мировая линия имеет переменную временную координату и постоянную пространственную. Такое положение дел для мировых линий допустимо. «Траектория» в пространстве у нашего писателя — скучная фиксированная точка, зато в пространстве-времени мировую линию он все-таки прочерчивает, в точности так же, как поднимающийся лифт, у которого координаты восток-запад не меняются, а вот координата высоты — переменна. Расстояние между двумя точками в пространстве-времени на этой мировой линии отличается от нуля, хотя расстояние, пройденное в пространстве, равно нулю, а все потому, что эти точки разнесены во времени.

Чтобы разобраться в том, как перевести первый закон Ньютона на релятивистский язык, предположим, что некоторому объекту предстоит переместиться от Алексея из точки времени нуль по его часам к Николаю с точкой времени одна секунда по его часам — такое с объектами происходит довольно часто. Какова будет траектория этого объекта, если на него не воздействуют внешние силы? На языке относительности два рассматриваемых события имеют координаты (пространство = местоположение Алексея, время = нуль) и (пространство = местоположение Николая, время = единица). Допустим, мальчишки покоятся относительно друг друга и часы у них синхронизированы; тогда объект двинется по прямой с некоторой постоянной скоростью, необходимой для того, чтобы успеть добраться от Алексея к Николаю за одну секунду по их часам. Такова мировая линия свободного объекта в специальной теории относительности.

Какой закон управляет этой мировой линией? Рассмотрим, что произойдет иначе — если бы объект не двигался по прямой, а заложил бы крюк. За то же время ему пришлось бы преодолеть большее расстояние, а значит, чтобы добраться до цели вовремя (местоположение Николая во времени = одна секунда), — и двигаться шустрее. Но, как мы уже убедились, если объект двигается относительно другого, его время изменяется медленнее, т. е. объект прибудет к цели менее чем за одну секунду по своим часам.

Движение объекта в пространстве по прямой и с постоянной скоростью образует мировую линию, вдоль которой часы этого объекта покажут максимум возможного времени, прошедшего между двумя событиями. Следовательно, первый закон Ньютона можно сформулировать в терминах новой геометрии так:

Если на объект не действует внешняя сила, он всегда перемещается вдоль мировой линии от одного события к другому так, что время, прошедшее по часам этого объекта (т. е. собственное время) максимально.

Эйнштейн знал, что его теория станет пушечным ядром, запущенным в замок современной физики. Он преклонялся перед Ньютоном, но это не помешало ему уничтожить одну из ключевых установок ньютоновской теории: существование абсолютного пространства и времени. К тому же, Эйнштейн отправил в небытие двухсотлетней давности краеугольный камень физической теории — эфир. И хотя его специальная теория относительности одержала много побед (объяснение большего периода существования у быстрых радиоактивных частиц, равенство и взаимопревращение энергии и материи), Эйнштейну хватило ума догадаться: люди, которые посвятили свои жизни пестованию и усовершенствованию того самого замка, вряд ли угостят шнапсом и приятельски похлопают по спине того, кто этот замок уничтожил. Эйнштейн изготовился к войне.

Прошли месяцы, а войны не случилось. Выходил выпуск за выпуском «Annalen der Physik», а на бомбардировку Эйнштейна миру физики словно бы нечего было ответить. Наконец Эйнштейн получил письмо от Макса Планка, в котором тот попросил разъяснений по нескольким вопросам. Прошло еще несколько месяцев. И что, всё? Душу вкладываешь в новую революционную теорию мироздания, а в ответ получаешь лишь пару вопросов от какого-то парня из Берлина?

1 апреля 1906 года Эйнштейна повысили в патентном бюро — он стал техническим экспертом второго класса. По понятиям бюро — честь, но, прямо скажем, не Нобелевская премия. Эйнштейн начал задумываться, не засланец ли он с планеты Неудачников, выражаясь словами Алексея. Или, выражаясь словами самого Эйнштейна, «достопочтенная государственная чернильница-урыльник». Час от часу не легче: в свои двадцать семь Эйнштейн опасался, что дни его созидания сочтены. Вероятно, он мог бы задумываться, не придется ли ему умереть в безвестности, как Бойяи и Лобачевскому, — но, как и почти все остальные, он о них и слыхом не слыхивал.

Однако Эйнштейну невдомек было, что письмо, полученное им от Макса Планка, было лишь вершиной айсберга. Зимним семестром 1905–1906 года на коллоквиуме по физике в Берлине Планк представил теорию Эйнштейна. А летом 1906 года он отправил одного своего студента — Макса фон Лауэ — навестить Эйнштейна в его патентном бюро. Наконец-то Эйнштейну выпала возможность пообщаться с миром реальных физиков.

Эйнштейн, войдя комнату, где дожидался его фон Лауэ, так засмущался, что не сумел представиться. Фон Лауэ глянул на него, но не обратил особого внимания, поскольку не мог вообразить, что настолько неприметный человек может быть автором теории относительности. Эйнштейн вышел. Чуть погодя, правда, вернулся, но все равно никак не мог собраться с духом и заговорить с гостем. Наконец фон Лауэ представился сам. По пути к дому Эйнштейн предложил ему сигару. Фон Лауэ обнюхал ее. Дешевая дрянь. За разговорами посланец Планка втихаря выбросил подношение в реку Аре. Ни видом, ни запахом увиденного фон Лауэ не впечатлился, а вот услышанное подействовало на него сильно. И фон Лауэ, которого в будущем ожидала Нобелевская премия (1914 года, за открытие дифракции рентгеновских лучей), и Макс Планк, Нобелевский лауреат 1918 года, стали ключевыми сторонниками Эйнштейна и теории относительности. Годы спустя, рекомендуя Эйнштейна на место в Праге, Планк сравнит его с Коперником.

Поддержка Планком теории относительности — ирония судьбы: он с большим трудом принял ранние работы Эйнштейна по фотоэффекту — новую интерпретацию его же, Планка, квантовой теории. Но вот поди ж ты: в части теории относительности Планк оказался человеком широких и гибких взглядов — он немедленно воспринял ее как верную. В 1906 году Планк стал первым человеком после Эйнштейна, опубликовавшим статью по теории относительности. В той статье он первым же и применил относительность к квантовой теории. А в 1907 году он — также первым — руководил диссертацией на тему теории относительности.

Бывший преподаватель Эйнштейна по Политехникуму Герман Минковский, находившийся тогда в Гёттингене, оказался еще одним поборником теории относительности — из тех немногих, кто внес в нее важный вклад еще на заре ее существования: он устроил коллоквиум, на котором ввел в теорию относительности геометрию и понятие о времени как о четвертой координате. В лекции 1908 года Минковский сказал: «Таким образом пространство само по себе и время само по себе обречены отойти в мир теней, и лишь союз этих двух сохранит независимое существование».

Невзирая на поддержку маститых физиков — преимущественно в Германии, — широкого признания специальной теории относительности пришлось дожидаться. В июле 1907 года Планк написал Эйнштейну, что из сторонников относительности «собирается скромная толпа». А от многих одобрения так и не поступило. Майкельсон, как мы уже говорили, вцепился в эфир. Лоренц, хоть и — вполне взаимно — испытывал уважение к Эйнштейну, тоже не был готов расстаться с эфирной концепцией. А Пуанкаре, так и не постигший теории относительности, противился ей вплоть до своей смерти в 1912 году.

Но пока физическое сообщество не спеша раздумывало над идеями Эйнштейна, он уже принялся за работу над следующей, еще более великой революцией. И эта революция вновь сделает геометрию центром физики — той точкой, от которой она отклонилась после того, как Ньютон ввел уравнения математического анализа. По сравнению с этой первая революция покажется цветочками.

Категория: ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА | Добавил: admin | Теги: развитие математики, Уроки математики, математика в школе, начало математики, история геометрии, сайт для учителей математики, история математики
Просмотров: 127 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ

ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск
Copyright MyCorp © 2017
Яндекс.Метрика Рейтинг@Mail.ru