Воскресенье, 17.12.2017, 10:44
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ЧИСЛОВАЯ СИМВОЛИКА СРЕДНЕВЕКОВЬЯ [9]
ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА [38]
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0
Форма входа

Главная » Файлы » ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ » ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА

Посланье в бутылке Клейна-Калуцы
06.05.2016, 15:11

За день до своей смерти Эйнштейн попросил, чтобы ему подали его последние расчеты по объединенной теории поля. Он тридцать лет бесплодно пытался изменить общую теорию относительности так, чтобы она охватывала и электромагнитные силы. Один из самых многообещающих вариантов возник у Эйнштейна в 1919 году, в самом начале его поисков, пока он разбирал почту. Идея посетила его сознание не напрямую, а через письмо одного нищего математика по имени Теодор Калуца.

В письме Эйнштейн нашел предложение, как можно объединить электромагнитные силы с гравитационными. У этой теории была одна маленькая странность. Эйнштейн написал в ответ: «Идея создания посредством пятимерного цилиндрического мира никогда не приходила мне в голову…» Пятимерный цилиндр? Да кому вообще такое могло прийти в голову? Никто не знает, как Калуца до этого додумался, однако Эйнштейн в том же письме добавил: «Мне чрезвычайно симпатична ваша мысль». Сейчас нам понятно, что Калуца обогнал время, однако пожадничал измерений.

Мы уже видели, что общая теория относительности описывала, как материя влияет на пространство через метрику, чьи компоненты — g — факторы — сообщают, как именно измерять расстояние между соседними точками на основании разности их координат. Количество g — факторов зависит от количества измерений пространства. Например, в трехмерном пространстве их шесть. В плоском расстояние равно (разница между координатами х )2 + (разница между координатами у )2 + (разница между координатам z )2, т. е. g xx , g yy и g zz все равны 1, а факторы, соответствующие перекрестным — g xy, g yz и g xz — все равны нулю и их нет в уравнении. В четырехмерном неевклидовом пространстве из общей теории относительности выходит десять независимых g — факторов (принимая во внимание равенства типа g xy = g yx ), все они описываются уравнениями Эйнштейна. Калуца сначала осознал вот что: если взять пять измерений, возникнут еще g — факторы, отвечающие дополнительному измерению.

Далее Калуца задался вопросом: если формально расширить эйнштейново поле до пяти измерений, какие уравнения получатся для дополнительных g-факторов? Ответ ошеломительный: выходят уравнения Максвелла для электромагнитного поля! Начиная с пятого измерения электромагнетизм вдруг возникает в теории гравитации. Эйнштейн писал: «Формальное единство вашей теории поразительно».

Конечно, интерпретация метрики дополнительного измерения как физического электромагнитного поля требует некоторой возни с теорией. И что там, кстати, с той самой маленькой странностью — дополнительным измерением? Калуца утверждал, что оно конечно по длине, а еще точнее — такое маленькое, что мы бы и его и не заметили, даже если бы сами копошились внутри. Сверх того Калуца заявил, что новое измерение имеет новую топологию: в ней вместо прямой — окружность, т. е. оно замыкается на себе, свертывается (и поэтому, в отличие от конечной прямой, концов не имеет). Представьте Пятую авеню с нулевой шириной — в виде простой линии. В новом измерении Калуцы пересекающие ее улицы превратятся в окружности, прорезывающиеся из Пятой авеню. Разумеется, пересекающие улицы возникают с интервалом в квартал, но дополнительное измерение есть в каждой точке вдоль авеню. Таким образом если добавить линии новое измерение, она не обрастет окружностями, а превратится в цилиндр наподобие садового шланга. Только очень тонкого.

По сути, Калуца утверждал, что гравитация и электромагнетизм на самом деле суть компоненты одного и того же, но выглядят по-разному потому, что мы наблюдаем некоторое усредненное неощутимое движение крошечного четвертого пространственного измерения. Эйнштейн сомневался в теории Калуцы, однако чуть погодя все же передумал и в 1921 году помог Калуце опубликовать его теорию.

В 1926-м Оскар Клейн, ассистент профессора в Университете Мичигана, независимо от Калуцы предложил ту же теорию, но с некоторыми усовершенствованиями. Одно из них — осознание, что эта теория приводит к верным уравнениям движения частиц, если в этом загадочном пятом измерении частица имеет определенные значения импульса. Эти «разрешенные» значения оказались кратны определенному минимальному импульсу. Если допустить, как это сделал Калуца, что пятое измерение замкнуто на само себя, можно применять квантовую теорию для того, чтобы рассчитать из минимального импульса возможное значение «длины» этого свернутого пятого измерения. Если бы вдруг выяснилось, что измерение это — обозримого, макроскопического размера, теория оказалась бы под угрозой, поскольку мы этого измерения никак не наблюдаем. Но получился размер 10–30 сантиметра. Без проблем. Измерение скрыто от глаз будь здоров.

Теория Клейна-Калуцы намекала на формальную связь между теориями, но не на структуру, которая тут же предоставляла нечто совершенно новое. Следующие несколько лет физики искали другие предсказания, какие могла бы дать эта теория, — примерно в том же ключе, в каком Клейн рассуждал о размерах нового измерения. Им удалось найти новые доводы, которые вроде бы подразумевали, что с ее помощью можно предсказывать соотношение массы электрона и его заряда. Однако результат предсказания сильно расходился с реальностью. Где-то на полпути между этим затруднением и странным предсказанием пятого измерения физики охладели к новой теории. Эйнштейн в последний раз вернулся к ней в 1938 году.

Калуца, умерший за год до Эйнштейна, так почти и не продвинулся далее. Но кое-что с его неоперившейся теории ему по-крупному перепало. Когда он писал Эйнштейну, ему было 34 и он уже десять лет содержал семью на жалованье приват-доцента (примерный аналог ассистента профессора) в Кёнигсберге. Это самое жалованье лучше всего описывается в терминах дорогой его сердцу математики: за каждый семестр он получал 5 раз по х раз у немецких марок (или, говоря строго, золотых марок), где х было равно числу студентов в его классе, а у — числу лекционных часов еженедельно. В итоге получалось примерно 100 марок в год. В 1926 году Эйнштейн назвал такие условия жизни «schwierig» , что примерно означает «только собаки могут жить так». С помощью Эйнштейна Калуца в 1929 году наконец получил профессорское звание в Университете Киля. Он перебрался в Гёттинген в 1935 году, где стал полноправным профессором. Там он и прожил еще девятнадцать отведенных ему лет. Однако вплоть до 1970-х возможность новых измерений всерьез не рассматривал никто.

Категория: ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА | Добавил: admin | Теги: развитие математики, Уроки математики, математика в школе, начало математики, история геометрии, сайт для учителей математики, история математики
Просмотров: 153 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ

ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск
Copyright MyCorp © 2017
Яндекс.Метрика Рейтинг@Mail.ru