Вторник, 05.11.2024, 16:43
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ЧИСЛОВАЯ СИМВОЛИКА СРЕДНЕВЕКОВЬЯ [9]
ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА [38]
Главная » Файлы » ИСТОРИЯ РАЗВИТИЯ МАТЕМАТИЧЕСКОЙ НАУКИ » ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА

Революция искривленного пространства
06.05.2016, 16:08

Евклид стремился создать непротиворечивую математическую систему, основанную на геометрии пространства. Следовательно, свойства пространства, проистекающие из евклидовой геометрии, таковы, какими они представлялись древним грекам. Но действительно ли пространство устроено так, как описывал Евклид и количественно определял Декарт? Или возможны и другие варианты?

Неизвестно, вскинул бы Евклид бровь-другую, узнай он, что его «Начала» еще 2000 лет останутся непреложны, но программисты сказали бы, что 2000 лет до выхода версии 2.0 — довольно долго. За это время многое изменилось: мы открыли устройство Солнечной системы, получили возможность рассекать по морям, изобрели карту и глобус, а также прекратили пить разбавленное вино за завтраком. И, кроме того, у математиков развилась поголовная непереносимость к пятому постулату Евклида — о параллельности. Увы, не содержание этого утверждения находили они отвратительным, а то, что место этому допущению было среди теорем.

Те математики, кто на протяжении веков пытался доказать постулат параллельности как теорему, подходили совсем близко к открытию странных и поразительных новых разновидностей пространства, но всяк претыкался на простой убежденности: этот постулат есть истинное и неотъемлемое свойство пространства.

Всяк за исключением одного: пятнадцатилетнего подростка по имени Карл Фридрих Гаусс, которому, так уж вышло, суждено было стать одним из любимцев Наполеона. Озарение, посетившее юного гения в 1792 году, заронило семена новой революции. В отличие от предыдущих, эта принесет не революционное развитие идей Евклида, а совершенно новую операционную систему. Вскоре будут открыты и описаны неведомые изумительные пространства, остававшиеся незамеченными столько веков.

С открытием искривленных пространств возник естественный вопрос: евклидово ли наше пространство — или, может, оно иное? Именно этот вопрос произвел переворот в физике. Но и математику он поверг в недоумение. Если евклидова структура не есть простая абстракция, описывающая истинное устройство пространства, то что же она такое? Если можно усомниться в постулате параллельности, как же тогда быть с остальными евклидовыми построениями? Вскоре после открытия искривленного пространства вся евклидова геометрия рухнула, а за нею — вот те на! — и вся остальная математика. Когда же пыль осела, в новой эпохе очутились не только теория пространства, но и вся физика с математикой.

Чтобы понять, насколько трудно оказалось противоречить Евклиду, стоит задуматься о том, сколь глубоко укоренилось его описание пространства. «Начала» и в его-то времена были классикой. Евклид не только определил природу математики, но его книга играла ключевую роль в образовании и натурфилософии как образец логического мышления. Эта работа имела решающее значение для интеллектуального возрождения в Средние века. Этот труд после изобретения печатного станка в 1454 году издали одним из первых, а с 1533 года и до XVIII века она оставалась единственной греческой работой, напечатанной на языке оригинала. До XIX века любой труд по архитектуре, устройство любого рисунка и картины, любая теория или уравнение, примененные в науке, были евклидовыми по умолчанию. И «Начала», конечно, заслуживали своего великого положения. Евклид превратил наше интуитивное чувство пространства в абстрактную логическую теорию, из которой мы научились выводить все остальное. Быть может, нам стоит благодарить Евклида в первую очередь за то, что он осмелился без стыда оголить свои допущения и никогда не претендовал на то, что доказанные им теоремы есть не более чем логические следствия немногих не доказанных им постулатов. Мы, правда, уже сообщили в части I, что один из его постулатов — постулат параллельности — вызвал неудовольствие практически у всех исследователей, изучавших труды Евклида, поскольку лишен был простоты и интуитивной ясности, свойственной остальным евклидовым допущениям. Вспомним формулировку:

Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Евклид, доказывая первые свои двадцать восемь теорем, постулат параллельности никак не использовал. К тому времени он уже доказал утверждение, обратное этому постулату, а также и другие, куда более пригодные для звания аксиом, — вроде фундаментального факта, что сумма длин двух любых сторон треугольника всегда больше длины третьей. Так зачем же ему, зашедшему так далеко, понадобился этот затейливый и вполне технический постулат? Сроки сдачи книги поджимали, что ли?

За 2000 лет, за 100 поколений родившихся и умерших, пока менялись границы, пока возникали и угасали политические системы, а Земля проскочила 1000 миллиардов миль вокруг нашего Солнца, мыслители планеты по-прежнему оставались привержены Евклиду, не ставя под сомнение слов бога своего, кроме одного малюсенького «но»: можно ли как-нибудь все-таки доказать этот дурацкий постулат?

Категория: ИСТОРИЯ ГЕОМЕТРИИ ОТ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ ДО ГИПЕРПРОСТРАНСТВА | Добавил: admin | Теги: развитие математики, Уроки математики, начало математики, история геометрии, сайт для учителей математики, математика в школе, история математики
Просмотров: 809 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 4
    Гостей: 4
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru