Суббота, 30.11.2024, 06:53
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
МАТЕМАТИКА ВЧЕРА, СЕГОДНЯ, ЗАВТРА [12]
УДИВИТЕЛЬНЫЙ МИР ЧИСЕЛ [17]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА В РАССКАЗАХ ДЛЯ ДЕТЕЙ [18]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА ДЛЯ ВЗРОСЛЫХ И ДЕТЕЙ [31]
ШКОЛЬНИКАМ О ШИФРАХ [26]
ЗАГАДКИ И ДИКОВИНКИ В МИРЕ ЧИСЕЛ [68]
ВСЕМИРНАЯ ИСТОРИЯ СИММЕТРИИ [16]
Главная » Статьи » ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА » ЗАГАДКИ И ДИКОВИНКИ В МИРЕ ЧИСЕЛ

Чтение мыслей по спичкам

Третье видоизменение того же фокуса представляет собою своеобразный способ отгадывания задуманного по спичкам. Загадавший должен мысленно делить задуманное число пополам, полученную половину опять пополам и т. д. (от нечетного числа отбрасывая единицу), при каждом делении класть перед собой спичку: направленную вдоль стола, если делится число четное; поперек, если приходится делить нечетное. К концу операции получается фигура вроде следующей:

Вы всматриваетесь в эту фигуру и безошибочно называете задуманное число: 137. Как вы узнаете его?

Способ станет ясен сам собою, если в выбранном примере (137) мы последовательно обозначим возле каждой спички то число, при делении которого она была положена:

Теперь понятно, что так как последняя спичка во всех случаях обозначает число 1, то не составляет труда, восходя от нее к предшествующим делениям, добраться до первоначально задуманного числа. Например, по фигуре

вы можете вычислить, что задумано было число 664. В самом деле, выполняя последовательно удвоения (начиная с конца) и не забывая прибавлять в надлежащих местах единицу, получаем:

Таким образом, пользуясь спичками, вы прослеживаете ход чужих мыслей, восстановляя всю цепь умозаключений.

Тот же результат мы можем получить иначе, сообразив, что лежащая спичка в данном случае должна соответствовать в двоичной системе нулю (деление на 2 без остатка), а стоящая – единице. Таким образом, в предшествовавшем примере мы имеем (читая справа налево) число


или в десятичной системе так:

128 + 8 + 1 = 137.

А в последнем примере задуманное число изображается по двоичной системе:

или по десятичной:

512 + 128 + 16 + 8 + 1 = 664.

Еще пример. Какое число было задумано, если из спичек получилась фигура: 

Решение: 10010101 в двоичной системе, а в десятичной:

128 + 16 + 4+ 1 = 139.

Необходимо заметить, что получаемая при последнем делении единица также должна быть отмечаема стоящей спичкой.

Категория: ЗАГАДКИ И ДИКОВИНКИ В МИРЕ ЧИСЕЛ | Добавил: admin (14.08.2013)
Просмотров: 978 | Теги: арифметика, занимательная математика, интересная математика, уроки математики в школе, математика в школе, дидактический материал по математик | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru