Четверг, 25.07.2024, 04:51
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
МАТЕМАТИКА ВЧЕРА, СЕГОДНЯ, ЗАВТРА [12]
УДИВИТЕЛЬНЫЙ МИР ЧИСЕЛ [17]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА В РАССКАЗАХ ДЛЯ ДЕТЕЙ [18]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА ДЛЯ ВЗРОСЛЫХ И ДЕТЕЙ [31]
ШКОЛЬНИКАМ О ШИФРАХ [26]
ЗАГАДКИ И ДИКОВИНКИ В МИРЕ ЧИСЕЛ [68]
ВСЕМИРНАЯ ИСТОРИЯ СИММЕТРИИ [16]
Главная » Статьи » ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА » ЗАГАДКИ И ДИКОВИНКИ В МИРЕ ЧИСЕЛ

«Русский» способ умножения

В некоторых местностях у наших крестьян приходится иногда наблюдать применение очень остроумного способа умножения целых чисел, который не похож на обычный школьный прием и унаследован, по-видимому, от глубочайшей древности. Способ это интересен тем, что, пользуясь им, можно обходиться без таблицы умножения, так как умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоении другого числа.

Вот пример:

32 × 13

16 × 26

8 × 52

4 × 104

4 × 208

1 × 416

Деление пополам продолжают до тех пор, пока в частном не получится 1, параллельно удваивая другое число. Последнее удвоенное число и дает искомый результат. Основание этого приема очевидно: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое увеличить. Ясно поэтому, что в результате многократного повторения этой операции получается искомое произведение:

32 × 13 = 1 × 416.

Но как поступать, если приходится делить пополам число нечетное? Народный способ легко выходит из этого затруднения. Надо – гласит правило, – в случае нечетного числа откинуть единицу и остаток делить пополам; но зато к последнему числу правого столбца нужно будет прибавить все те числа этого столбца, которые стоят против нечетных чисел левого столбца: сумма и будет искомым произведением. Практически это делают так, что все строки с четными левыми числами зачеркивают; остаются только те, которые содержат налево нечетное число. Приведем пример (звездочка указывает, что данную строку надо зачеркнуть):

19 × 17

9 × 34

4 × 68*

2 × 136*

1 × 272

Сложив незачеркнутые числа, получаем вполне правильный результат: 

Нетрудно понять полную теоретическую обоснованность этого приема, если принять во внимание, что

19 × 17 = (18 + 1) 17= 18 × 17 + 17 9 × 34 = (8 + 1) 34 = 8 × 34 + 34 и т. п.

Ясно, что числа – 17, 34 и т. п., утрачиваемые при делении нечетного числа пополам, необходимо прибавить к результату последнего умножения, чтобы получить произведение. Нельзя, как видите, отказать в практичности этому народному приему умножения, который один научный английский журнал («Knowledge» – знание) окрестил «русским крестьянским» способом.

Категория: ЗАГАДКИ И ДИКОВИНКИ В МИРЕ ЧИСЕЛ | Добавил: admin (14.08.2013)
Просмотров: 764 | Теги: арифметика, занимательная математика, интересная математика, уроки математики в школе, математика в школе, дидактический материал по математик | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru