Суббота, 30.11.2024, 05:34
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КАРТОЧКИ ПО АЛГЕБРЕ [23]
КАРТОЧКИ ПО ГЕОМЕТРИИ [17]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [84]
МАТЕМАТИКА В 4 КЛАССЕ [19]
МАТЕМАТИКА В 5 КЛАССЕ [114]
ВЕЛИКИЕ МАТЕМАТИКИ [79]
МАТЕМАТИЧЕСКАЯ ВСЕЛЕННАЯ [50]
МАТЕМАТИЧЕСКИЕ СКАЗКИ В КАРТИНКАХ [8]
КАРТОЧКИ ПО МАТЕМАТИКЕ [4]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА [188]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ [265]
ДЕНЬГИ [23]
ЛИЧНОСТЬ В НАУКЕ [87]
БЕЙСИК ДЛЯ МЛАДШИХ ШКОЛЬНИКОВ [40]
ИНФОРМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [82]
ПАМЯТКИ ПО МАТЕМАТИКЕ [193]
ЗАБАВНЫЕ ЗАДАЧИ ЯКОВА ПЕРЕЛЬМАНА [20]
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ [6]
БАЗЫ ДАННЫХ [74]
САМОУЧИТЕЛЬ "СЛЕПОЙ" ПЕЧАТИ НА КОМПЬЮТЕРЕ [20]
РАБОТАЕМ В Microsoft Office [18]
АППАРАТНЫЕ СРЕДСТВА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА [44]
ОСНОВЫ ИНФОРМАТИКИ ДЛЯ ШКОЛЬНИКОВ И СТУДЕНТОВ [77]
СОВЕТЫ ПО ОБУСТРОЙСТВУ КОМПЬЮТЕРА [72]
МАТЕМАТИКА В 6 КЛАССЕ [148]
МАТЕМАТИКА В 7 КЛАССЕ [85]
МАТЕМАТИКА В 8 КЛАССЕ [36]
МАТЕМАТИКА В 9 КЛАССЕ [153]
ЖИВОЙ УЧЕБНИК ГЕОМЕТРИИ [92]
УДИВИТЕЛЬНАЯ МАТЕМАТИКА [33]
ВЕЛИКАЯ ТЕОРЕМА ФЕРМА [45]
МАТЕМАТИКА В 11 КЛАССЕ [41]
КОНТРОЛЬНЫЕ РАБОТЫ [31]
ЗАНИМАТЕЛЬНЫЕ ЗАДАЧИ ПО ИНФОРМАТИКЕ ДЛЯ 5-6 КЛАССОВ [17]
ОБУЧАЮЩИЕ РАБОТЫ ПО ГЕОМЕТРИИ. 7 КЛАСС [19]
Главная » Статьи » БАЗЫ ДАННЫХ

Null-значения и логические операции

Обычно в системах управления базами данных непосредственно поддерживаются только три логические операции: отрицание ¬, конъюнкция & и дизъюнкция ∨. Операции следования ⇒ и равносильности ⇔ выражаются через них с помощью подстановок:

(xy) ≔ (¬xy);

(xy) ≔ (xy) & (yx);

Заметим, что эти подстановки полностью сохраняются и при использовании Null-значений.

Интересно, что при помощи операции отрицания «¬» любая из операций конъюнкция & или дизъюнкция ∨ может быть выражена одна через другую следующим образом:

(x & y) ≔¬ (¬x ∨¬y);

(xy) ≔ ¬ (¬x & ¬y);

На эти подстановки, как и на предыдущие, Null-значения влияния не оказывают.

А теперь приведем таблицы истинности логических операций отрицания, конъюнкции и дизъюнкции, но кроме привычных значений True и False, используем также Null-значение в качестве операндов. Для удобства введем следующие обозначения: вместо True будем писать t, вместо False – f, а вместо Null – n.

1. Отрицание ¬x.


Стоит отметить следующие интересные моменты касательно операции отрицания с использованием Null-значений:

1) ¬¬x ≔ x – закон двойного отрицания;

2) ¬Null ≔ Null – Null-значение является неподвижной точкой.


2. Конъюнкция x & y.


Эта операция также имеет свои свойства:

1) x & yy & x– коммутативность;

2) x & x ≔ x – идемпотентность;

3) False & y ≔ False, здесь False – поглощающий элемент;

4) True & yy, здесь True – нейтральный элемент.


3. Дизъюнкция xy.


Свойства:

1) xyyx – коммутативность;

2) xxx – идемпотентность;

3) False ∨ yy, здесь False – нейтральный элемент;

4) True ∨ y ≔ True, здесь True – поглощающий элемент.

Исключение из общего правила составляют правила вычисления логических операций конъюнкция & и дизъюнкция ∨ в условиях действия законов поглощения:

(False & y) ≔ (x & False) ≔ False;

(True ∨ y) ≔ (x ∨ True) ≔ True;

Эти дополнительные правила формулируются для того, чтобы при замене Null-значения значениями False или True результат бы все равно не зависел бы от этого значения.

Как и ранее было показано для других типов операций, применение Null-значений в логических операциях могут также привести к неожиданным значениям. Например, логика на первый взгляд нарушена в законе исключения третьего (x ∨ ¬x) и в законе рефлексивности (x = x), поскольку при x ≔ Null имеем:

(x ∨ ¬x), (x = x) ≔ Null.

Законы не выполняются! Объясняется это так же, как и раньше: при подстановке Null-значения в выражение информация о том, что это значение сообщается одной и той же переменной теряется, а в силу вступает общее правило работы с Null-значениями.

Таким образом, делаем вывод: при выполнении логических операций с Null-значениями в качестве операнда эти значения определяются системами управления базами данных как применимое, но неизвестное.


Категория: БАЗЫ ДАННЫХ | Добавил: admin (31.12.2013)
Просмотров: 1012 | Теги: домены, изучаем информатику, Базы данных, программирование для чайников, программирова, лекции по информатике, информатика в школе, унарная операция | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru