Суббота, 30.11.2024, 02:58
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
РАЗВИВАЮЩИЕ ЗАДАНИЯ [74]
ПЛАНИМЕТРИЯ В ТЕЗИСАХ И РЕШЕНИЯХ [35]
ТЕСТОВЫЕ ЗАДАНИЯ [11]
ПОДГОТОВКА К ГИА ПО АЛГЕБРЕ [19]
ТЕСТОВЫЕ МАТЕРИАЛЫ ПО ГЕОМЕТРИИ [14]
Главная » Статьи » МАТЕМАТИКА В 9 КЛАССЕ » ПЛАНИМЕТРИЯ В ТЕЗИСАХ И РЕШЕНИЯХ

Векторы
Теорема о разложении вектора по базису.

Если на плоскости даны два неколлинеарных вектора а и b и любой другой вектор с, то существуют единственные числа n и m, такие, что с = nа + mb (рис. 107).

где

Рис. 107.


Теорема о скалярном произведении векторов.

Скалярное произведение векторов равно произведению их абсолютных q величин (длин) на косинус угла между ними (рис. 108).

ОА ? ОВ = ОА ? OB ? cos ?.

Рис. 108.

Основные формулы планиметрии

Для треугольника (рис. 109):

Рис. 109.

где a, b, с – стороны треугольника;

?, ?, ? – противолежащие им углы;

r и R – радиусы вписанной и описанной окружностей;

ha, ma, la – высота, медиана и биссектриса, проведённые к стороне а;

S – площадь треугольника;

– полупериметр треугольника.

Медианы в треугольнике делятся точкой пересечения в отношении 2:1, считая от вершины (рис. 110).

Рис. 110.

Для четырёхугольников:

где а, b – длины оснований;

h – высота трапеции.


Площадь параллелограмма со сторонами а, b и углом ? между ними вычисляется по формуле S = ab sin ?. Можно также воспользоваться формулой:

где d1, d2– длины диагоналей, ? – угол между ними (или S = aha, где ha – высота).

Для произвольного выпуклого четырёхугольника (рис. 111):

Рис. 111.


Для правильного n-угольника:

(R и r – радиусы описанной и вписанной окружностей, аn – длина стороны правильного n-угольника).

Для окружности и круга (рис. 112):

Рис. 112.

и 1\2R2?, если ? выражен в радианах.

Sсегмента = Sсектора – Sтреугольника.

Формулы аналитической планиметрии

Если даны точки A(x1; y1) и В(х2; у2), то

Уравнение прямой АВ:

легко приводится к виду ах + by + с = 0, где вектор n = (а, b) перпендикулярен прямой.

Расстояние от точки А(х1; у1) до прямой ах + by + с = 0 равно

Расстояние между параллельными прямыми ах + by + с1 = 0 и ах + by + с2 = 0 равно

Угол между прямыми а1х + BLу + с1 = 0 и а2х + b2y + с2 = 0 вычисляется по формуле:

Уравнение окружности с центром в точке O(x0, y0) и радиусом R:(x – xo)2+ (y – yo)2= R2.

Категория: ПЛАНИМЕТРИЯ В ТЕЗИСАХ И РЕШЕНИЯХ | Добавил: admin (16.11.2013)
Просмотров: 1722 | Теги: Подготовка к ЕГЭ по математике, Геометрия, задачи по планиметрии и их решения, решаем задачи по геометрии, математика в школе, изучаем планиметрию | Рейтинг: 5.0/1
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru