Суббота, 30.11.2024, 04:55
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КАРТОЧКИ ПО АЛГЕБРЕ [23]
КАРТОЧКИ ПО ГЕОМЕТРИИ [17]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [84]
МАТЕМАТИКА В 4 КЛАССЕ [19]
МАТЕМАТИКА В 5 КЛАССЕ [114]
ВЕЛИКИЕ МАТЕМАТИКИ [79]
МАТЕМАТИЧЕСКАЯ ВСЕЛЕННАЯ [50]
МАТЕМАТИЧЕСКИЕ СКАЗКИ В КАРТИНКАХ [8]
КАРТОЧКИ ПО МАТЕМАТИКЕ [4]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА [188]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ [265]
ДЕНЬГИ [23]
ЛИЧНОСТЬ В НАУКЕ [87]
БЕЙСИК ДЛЯ МЛАДШИХ ШКОЛЬНИКОВ [40]
ИНФОРМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [82]
ПАМЯТКИ ПО МАТЕМАТИКЕ [193]
ЗАБАВНЫЕ ЗАДАЧИ ЯКОВА ПЕРЕЛЬМАНА [20]
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ [6]
БАЗЫ ДАННЫХ [74]
САМОУЧИТЕЛЬ "СЛЕПОЙ" ПЕЧАТИ НА КОМПЬЮТЕРЕ [20]
РАБОТАЕМ В Microsoft Office [18]
АППАРАТНЫЕ СРЕДСТВА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА [44]
ОСНОВЫ ИНФОРМАТИКИ ДЛЯ ШКОЛЬНИКОВ И СТУДЕНТОВ [77]
СОВЕТЫ ПО ОБУСТРОЙСТВУ КОМПЬЮТЕРА [72]
МАТЕМАТИКА В 6 КЛАССЕ [148]
МАТЕМАТИКА В 7 КЛАССЕ [85]
МАТЕМАТИКА В 8 КЛАССЕ [36]
МАТЕМАТИКА В 9 КЛАССЕ [153]
ЖИВОЙ УЧЕБНИК ГЕОМЕТРИИ [92]
УДИВИТЕЛЬНАЯ МАТЕМАТИКА [33]
ВЕЛИКАЯ ТЕОРЕМА ФЕРМА [45]
МАТЕМАТИКА В 11 КЛАССЕ [41]
КОНТРОЛЬНЫЕ РАБОТЫ [31]
ЗАНИМАТЕЛЬНЫЕ ЗАДАЧИ ПО ИНФОРМАТИКЕ ДЛЯ 5-6 КЛАССОВ [17]
ОБУЧАЮЩИЕ РАБОТЫ ПО ГЕОМЕТРИИ. 7 КЛАСС [19]
Главная » Статьи » ВЕЛИКАЯ ТЕОРЕМА ФЕРМА

Эволюция теории чисел

После смерти Пифагора представление о математическом доказательстве быстро распространилось по всему цивилизованному миру. Два столетия спустя после того, как его Академия сгорела до основания, центр математических исследований переместился из Кротона в город Александрию. В 332 году до н. э., покорив Грецию, Малую Азию и Египет, Александр Македонский решил построить столицу, которая должна была стать самым величественным городом мира. Александрия действительно стала прекраснейшим городом и к тому же, хотя и не сразу, научным центром. Только после смерти Александра Македонского, когда на египетский трон взошел его единоутробный брат Птолемей I, Александрия стала тем местом, где возникло первое в мире высшее учебное заведение — Академия. Математики и другие интеллектуалы, привлеченные репутацией Академии, и, еще в большей степени, Александрийской библиотеки, стали перебираться в культурную столицу Птолемея I.

Замысел создания Библиотеки принадлежал Деметрию Фаларею, непопулярному оратору, который был вынужден бежать из Афин.

После долгих странствий он нашел прибежище в Александрии. Фаларею удалось внушить Птолемею I мысль о том, что следует собрать все великие сочинения, а вслед за книгами в Александрию потянутся и великие умы. Когда в хранилищах Александрийской библиотеки оказались собраны сочинения из Египта и Греции, специальные агенты разъехались в поисках сокровищ знания по Европе и Малой Азии. Ненасытный аппетит собирателей Библиотеки ощущали на себе все, кто посещал в ту пору Александрию: при въезде в город у приезжих отбирали всю литературу и передавали писцам. Со всех сочинений те снимали копии, после чего подлинники отправлялись в Библиотеку, а копии с благодарностью возвращались прежним владельцам книг. Тщательное копирование всех сочинений, оказавшихся в багаже прибывающих в Александрию путешественников, вселяет в современных историков надежду, что где-нибудь в мире на чердаке будет обнаружена копия какого-нибудь великого сочинения, считавшегося утерянным. Так, в 1906 году историк науки Гейберг обнаружил в Константинополе такую рукопись — «Метод», в которой содержалось несколько сочинений Архимеда.

Мечта Птолемея I о постройке сокровищницы знания пережила его самого, и к тому времени, когда на троне сменилось несколько представителей династии Птолемеев, Александрийская библиотека уже насчитывала более 600 000 сочинений. Изучая математику в Александрии, математики могли научиться всему, что было известно в мире, а учили их в Академии самые знаменитые ученые Древнего Мира. Первым главой математического факультета был не кто иной, как сам Евклид.

Евклид родился около 330 года до н. э. Подобно Пифагору, Евклид искал математическую истину ради самой математической истины и не занимался поиском приложений своих работ. Легенда рассказывает, что один ученик спросил Евклида, какая польза от математики, которую он изучает. Закончив урок, Евклид обратился к рабу и, указав на ученика, сказал: «Дай ему обол, ибо он желает иметь пользу от того, что изучает». Вскоре этот ученик был изгнан.

Значительную часть своей жизни Евклид провел за написанием «Начал» — учебника геометрии, имевшего наибольший успех за всю историю человечества. Вплоть до XX века «Начала» были вторым бестселлером после Библии. «Начала» состоят из тринадцати книг, часть которых посвящена изложению результатов исследований самого Евклида, а остальные представляют собой компиляцию всех математических знаний его века. Например, результаты исследований членов пифагорейского братства занимают две книги. За столетия, прошедшие после кончины Пифагора, математики изобрели множество разнообразных логических приемов, применимых в различных обстоятельствах, и Евклид искусно использовал в «Началах» все эти методы. В частности, Евклид применил логическое оружие, известное как reductio ad absurdum, или доказательство от противного. Этот метод вращается вокруг довольно хитроумной идеи: чтобы доказать истинность теоремы, прежде всего необходимо предположить, что эта теорема неверна. Далее математик изучает логические следствия того, что теорема неверна. В каком-то пункте в логической цепочке обнаруживается противоречие (например, выясняется, что 2+2=5). Математика питает непреодолимое отвращение к противоречиям. Отсюда делается заключение, что исходная теорема не может быть неверна, т. е. она истинна.

Английский математик Г.Г. Харди кратко выразил дух доказательства от противного в своей книге «Апология математика»: «Reductio ad absurdum, столь любимое Евклидом, — одно из самых прекрасных орудий математика. Это гораздо более тонкий гамбит, чем любая шахматная партия: шахматист может пожертвовать пешкой или даже какой-нибудь фигурой, но математик жертвует партией».

Одно из наиболее известных доказательств Евклида от противного — доказательство существования так называемых иррациональных чисел. По-видимому, иррациональные числа первоначально были открыты пифагорейцами несколькими столетиями раньше, но понятие иррационального числа вызывало у Пифагора столь сильное отвращение, что он отрицал существование иррациональных чисел.

Когда Пифагор провозгласил, что Вселенной управляют числа, он имел в виду только целые числа и их отношения, называемые рациональными числами. Иррациональное же число не является ни целым, ни дробью, и именно это обстоятельство казалось Пифагору отвратительным. Действительно, иррациональные числа настолько необычны, что их невозможно записать в виде конечных десятичных дробей или бесконечных периодических дробей. Например, такая бесконечная периодическая непрерывная дробь, как 0,111111…, — число весьма и весьма обыкновенное: оно равно дроби 1/9. То, что единица повторяется неограниченно много раз, означает лишь, что данное десятичное число обладает очень простой и регулярной структурой. В свою очередь такая строгая регулярность, несмотря на неоднократное (в действительности — бесконечнократное) повторение, означает, что данную бесконечную десятичную дробь можно записать в виде обыкновенной дроби. Но если вы захотите представить иррациональное число в виде десятичной дроби, то у вас получится бесконечная дробь, структура которой не будет регулярной и сколько-нибудь обозримой.

Для Пифагора идея красоты математики состояла в том, что рациональные числа (целые числа и обыкновенные дроби) позволяют объяснить все явления в природе. Эта путеводная философия ослепила Пифагора, не давая ему увидеть существование иррационального числа и, возможно, даже привела к казни одного из его учеников. Легенда рассказывает о том, что один из учеников Пифагора по имени Гиппас на досуге забавлялся с числом √2, пытаясь найти эквивалентную ему обыкновенную дробь. В конце концов он понял, что такой дроби не существует, т. е. √2 — иррациональное число. Совершив столь важное открытие, Гиппас, должно быть, пришел в неописуемый восторг, чего нельзя было сказать о его учителе. Пифагор определял все происходящее в мире с помощью рациональных чисел, и существование иррациональных чисел ставило под сомнение его идеал. Открытие Гиппаса могло бы повлечь за собой период споров и сомнений, и Пифагору пришлось бы признать новый источник чисел. Но Пифагор не хотел признать свои заблуждения и в то же время не мог разрушить аргументацию Гиппаса силой логики. К своему вечному позору, он приговорил Гиппаса к смерти через утопление.

Отец логики и математического метода прибег к силе, но так и не признал, что был неправ. Это было его самым позорным деянием и, возможно, величайшей трагедией греческой математики. Иррациональные числа обрели «права гражданства» в математике только после смерти Пифагора.

Введение иррациональных чисел означало гигантский прорыв в математике. Математики получили возможность бросить взгляд за пределы целых чисел и обыкновенных дробей, оглядеться и открывать или, быть может, изобретать новые числа. По словам математика XIX века Леопольда Кронекера: «Бог создал целые числа; все остальное дело рук человеческих».

Самым замечательным иррациональным числом по праву считается число π. В школе его иногда заменяют приближенным значением 31/7 или 3,14. Истинное значение π ближе к 3,14159265358979323846, но и эта длинная десятичная дробь — не более чем приближение к истинному значению числа π. В действительности же число π невозможно точно представить в виде десятичной дроби, так как десятичная дробь получается бесконечной и в распределении цифр нет никакой закономерности. Одна из замечательных особенностей случайного распределения цифр в десятичной записи числа π заключается в том, что вычислить ее можно с помощью весьма регулярного соотношения:

Вычислив первые несколько членов, вы можете получить весьма грубое приближение к π, однако последующие вычисления дают довольно хорошее приближение.

Вообще говоря, для вычисления длины окружности Вселенной с точностью до радиуса атома водорода достаточно знание 39 знаков числа π. Тем не менее, это не мешает специалистам вычислять число π на компьютере с очень большим количеством знаков. Текущий рекорд принадлежит Ясумасе Канаде из Токийского университета, который в 1996 году вычислил 6 миллиардов знаков десятичного разложения числа π. Недавно прошел слух о том, что русские по происхождению братья Чудновские из Нью-Йорка вычислили 8 миллиардов знаков десятичного разложения числа π и намереваются вычислить триллион десятичных знаков. Если Канада или братья Чудновские вознамерились бы продолжать свои вычисления до тех пор, пока их компьютеры не исчерпают всю энергию во Вселенной, то и тогда им не удалось бы найти точное значение числа π. Нетрудно понять, почему Пифагор настаивал на том, чтобы сведения о существовании столь необычных математических «зверей» оставались достоянием лишь узкого круга посвященных.


Значение числа π с более чем 1500 знаками

3.14159265358979323846264338327950288419716939937510582

0974944592307816406286208998628034825342117067982148086

5132823066470938446095505822317253594081284811174502841

0270193852110555964462294895493038196442881097566593344

6128475648233786783165271201909145648566923460348610454

3266482133936072602491412737245870066063155881748815209

2096282925409171536436789259036001133053054882046652138

4146951941511609433057270365759591953092186117381932611

7931051185480744623799627495673518857527248912279381830

1194912983367336244065664308602139494639522473719070217

9860943702770539217176293176752384674818467669405132000

5681271452635608277857713427577896091736371787214684409

0122495343014654958537105079227968925892354201995611212

9021960864034418159813629774771309960518707211349999998

3729780499510597317328160963185950244594553469083026425

2230825334468503526193118817101000313783875288658753320

8381420617177669147303598253490428755468731159562863882

3537875937519577818577805321712268066130019278766111959

0921642019893809525720106548586327886593615338182796823

0301952035301852968995773622599413891249721775283479131

5155748572424541506959508295331168617278558890750983817

5463746493931925506040092770167113900984882401285836160

3563707660104710181942955596198946767837449448255379774

7268471040475346462080466842590694912933136770289891521

0475216205696602405803815019351125338243003558764024749

6473263914199272604269922796782354781636009341721641219

9245863150302861829745557067498385054945885869269956909

2721079750930295532116534498720275596023648066549119881

8347977535663698074265425278625518184175746728909777727

938000816470200161452491921732172147723501414419735


Когда Евклид отважился рассмотреть проблему иррациональности в десятом томе «Начал», его цель состояла в том, чтобы доказать существование числа, не представимого в виде обыкновенной дроби. Вместо того, чтобы доказывать иррациональность числа π, Евклид рассмотрел квадратный корень из двух, √2, — число, которое при умножении на себя дает число 2. Чтобы доказать, что число √2 не представимо в виде обыкновенной дроби, Евклид воспользовался доказательством от противного и предположил, что число √2 представимо в виде обыкновенной дроби. Затем он показал, что эту гипотетическую дробь всегда можно упростить. Упрощение дроби означает, что числитель и знаменатель можно поделить на одно и то же целое число. Например, дробь 8/12 можно упростить, сократив числитель и знаменатель на 2 и превратив ее в дробь 4/6. В свою очередь, дробь 4/6 можно упростить до 2/3, а вот дробь 2/3 уже дальнейшему упрощению не поддается, почему и называется несократимой дробью. Евклид показал, что гипотетическая дробь, по предположению представляющая число √2, может быть упрощаема снова и снова бесконечное число раз, но так и не приводится к несократимому виду. Но это нелепо, так как все дроби приводимы к несократимому виду. Следовательно, гипотетическая дробь не может существовать. Это означает, что число √2 не представимо в виде дроби и, следовательно, иррационально. Ход доказательства Евклида приведен в Приложении 2.

Используя доказательство от противного, Евклид сумел доказать существование иррациональных чисел. До Евклида все числа, с которыми люди имели дело, были представимы как целые числа или обыкновенные дроби, но евклидовы иррациональные числа игнорировали традиционное представление чисел. Не существует иного способа описать число, равное квадратному корню из 2, как записав его в виде √2, поскольку его нельзя представить в виде обыкновенной дроби, а любая попытка записать √2 в виде десятичной дроби не позволяет получить ничего, кроме приближения, например, 1,414213562373…

Хотя Евклид, несомненно, питал интерес к теории чисел, его величайший вклад в математику был сделан в другой области. Истинной страстью Евклида была геометрия, и из тринадцати книг, составляющих «Начала», книги I–VI посвящены планиметрии (двумерной геометрии), а книги XI–XIII — стереометрии. Этот свод геометрических знаний был настолько полным, что содержание «Начал» составляло основу программ по геометрии в школах и университетах на протяжении следующих двух тысяч лет.

Математиком, составившим подобный свод знаний по теории чисел, стал Диофант Александрийский, последний защитник греческой традиции. Хотя достижения Диофанта в теории чисел достаточно задокументированы в его книгах, по существу ничего больше об этом замечательном математике не известно. Не известно, где он родился. В Александрию Диофант мог прибыть в любое время на протяжении «окна», протяженностью в пять веков! В своих сочинениях Диофант цитирует Гипсикла, из чего можно сделать вывод, что Диофант жил после 150 года до н. э.; с другой стороны, труды самого Диофанта цитирует Теон Александрийский, из чего следует, что Диофант жил до 364 года н. э. Разумной обычно считается дата — около 250 года н. э. Достоверно известно лишь своеобразное жизнеописание Диофанта. По преданию, оно было высечено на его надгробии в виде задачи-головоломки, словно специально предназначенной любителям математики:

«Бог ниспослал ему быть мальчиком шестую часть жизни; добавив к сему двенадцатую часть, Он покрыл его щеки пушком; после седьмой части Он зажег ему свет супружества и через пять лет после вступления в брак даровал ему сына. Увы! Несчастный поздний ребенок, достигнув меры половины полной жизни отца, он был унесен безжалостным роком. Через четыре года, утешая постигшее его горе наукой о числах, он [Диофант] завершил свою жизнь».

Требовалось вычислить продолжительность жизни Диофанта. Решение этой задачи приведено в Приложении 3.

Эта головоломка может служить примером задач того рода, которые любил Диофант. Он специализировался на решении задач в целых числах. Ныне такие задачи известны под названием диофантовых. Деятельность Диофанта протекала в Александрии, он собирал известные и придумывал новые задачи, а позднее объединил их в большом труде под названием «Арифметика». Из тринадцати книг, входивших в состав «Арифметики», только шесть пережили хаос Средних веков и стали источником вдохновения для математиков эпохи Возрождения, в том числе и для Пьера де Ферма. Остальные семь книг погибли в результате цепочки трагических событий, которые отбросили математику к временам древних вавилонян.

На протяжении столетий, разделяющих Евклида и Диофанта, Александрия продолжала оставаться интеллектуальной столицей цивилизованного мира, но весь этот период великий город находился под угрозой нападения иностранных армий. Первое крупное нападение произошло в 47 году до н. э., когда Юлий Цезарь предпринял попытку сбросить Клеопатру с трона, предав сожжению александрийский флот. Библиотека, расположенная неподалеку от гавани, сильно пострадала от пожара. Сотни тысяч книг погибли. К счастью для науки, Клеопатра по достоинству ценила значение Библиотеки и решительно вознамерилась восстановить ее в прежней славе. Марк Антоний понял, что путь к сердцу просвещенной царицы лежит через Библиотеку, и пошел маршем на Пергам. В этом городе уже была заложена своя библиотека. Правители города надеялись, что со временем она станет самым богатым книгохранилищем в мире, но Марк Антоний помешал сбыться этим надеждам, отправив все собрание книг в Египет и восстановив тем самым главенство Александрии.

На протяжении четырех следующих веков Библиотека продолжала пополнять свою коллекцию — до 389 года н. э., когда ей был нанесен первый из двух роковых ударов. Причиной обоих ударов стал религиозный фанатизм. Византийский император Феодосий приказал епископу Александрийскому Теофилу разрушить все языческие монументы. К сожалению, восстанавливая и восполняя Библиотеку, Клеопатра решила отвести под нее храм Сераписа. По приказу императора, это здание было разрушено, а «языческие» ученые, пытавшиеся спасти рукописи, накопленные за шесть веков, растерзаны толпой фанатиков. Началась мрачная эра Средних веков.

Несколько драгоценных экземпляров наиболее важных книг пережили бойню, учиненную христианами, и ученые продолжали наведываться в Александрию в поисках знания. Но в 642 году последовало нападение мусульман. На этот раз поражение потерпели христиане. На вопрос, что делать с Библиотекой, одержавший победу халиф Омар заявил, что книги, противоречащие Корану, должны быть уничтожены как вредоносные, а книги, согласующиеся с Кораном, также должны быть уничтожены как излишние. Рукописи были брошены в печи, которыми отапливались публичные бани, и греческая математика обратилась в дым. Не удивительно, что большая часть «Арифметики» Диофанта оказалась уничтоженной. Следует считать чудом, что шесть книг «Арифметики» смогли уцелеть, пережив трагедию Александрии.

Следующую тысячу лет математика на Западе пребывала в упадке, и только несколько выдающихся ученых Индии и Аравии не дали ей окончательно угаснуть. Они скопировали формулы из сохранившихся греческих математических рукописей и принялись заново придумывать для этих формул утраченные теоремы. Кроме того, они пополнили математику новыми элементами и среди прочего изобрели число нуль.

В современной математике нуль выполняет две функции. Во-первых, нуль позволяет нам различать такие числа, как 52 и 502. В системе счисления, в которой положение цифры определяет ее значение, символ 0 необходим для обозначения пустой позиции. Например, 52 означает 5 раз по десять плюс 2 раза по единице, в то время как 502 означает 5 раз по сто, 0 раз по десять и 2 раза по единице. Нуль играет решающую роль при устранении неоднозначности. Даже вавилоняне, жившие за три тысячи лет до н. э., оценили использование нуля во избежание путаницы, и греки восприняли идеи вавилонян, используя кружок, похожий на тот символ нуля, который мы используем сегодня. Однако нуль выполняет еще одну, более деликатную и значительную, функцию, которую полностью оценили лишь через несколько столетий индийские математики. Они осознали, что нуль не только позволяет заполнить пробел между значащими цифрами, но и существует сам по себе, независимо от других чисел. Так абстрактное понятие «ничего» впервые обрело свой осязаемый символ.

Современному читателю изобретение нуля может показаться тривиальным шагом, но не следует забывать о том, что именно вторая, более глубокая функция нуля ускользнула от внимания всех древнегреческих философов, в том числе Аристотеля. По мнению Аристотеля нуль должен был быть объявлен вне закона, поскольку он нарушал единообразие других чисел: деление обыкновенного числа на нуль приводило к непостижимому результату. К VI веку индийские математики уже не заметали проблему нуля под ковер, а индийский ученый VII века Брахмагупта оказался уже настолько искушенным, что использовал деление на нуль для определения бесконечности.

В то время как Европа оставила благородный поиск истины, Индия и Аравия укрепляли знание, тайно похищенное на пепелище Александрии, и излагали его на новом, более выразительном языке. Индийские и арабские математики не только пополнили математический словарь нулем, но и заменили примитивные греческие символы и неуклюжие римские числительные общепринятой и ныне системой счисления. Последнее достижение, как и введение нуля, может показаться ничтожно малым продвижением, но попробуйте умножить CLV на DCI, и вы оцените значение этого прорыва: эквивалентная задача умножения 155 на 601 гораздо проще. Развитие любой научной дисциплины зависит от ее способности развивать свои идеи и обмениваться ими, а это в свою очередь определяется научным языком, который должен быть достаточно подробным и гибким. Идеи Пифагора и Евклида отличались большим изяществом, несмотря на грубое и неуклюжее оформление, но после перевода в арабскую символику они расцвели и принесли много плодов, породив новые и богатые понятия.

В X веке французский ученый Герберт Аврилакский перенял новую систему счисления у испанских мавров и, занимаясь преподаванием в церквах и школах по всей Европе, внедрил новую систему на Западе. В 999 году он был избран папой Сильвестром II, и это позволило ему способствовать еще большему распространению новых индо-арабских цифр. И хотя необычная эффективность новой системы счисления произвела подлинный переворот в выполнении всех счетных операций и была быстро воспринята купцами, она слабо способствовала оживлению европейской математики.

Жизненно важным, поворотным пунктом в развитии западной математики стал 1453 год, когда турки разграбили Константинополь. За прежние годы рукописи, спасенные после уничтожения Александрии, нашли убежище в Константинополе, и теперь снова оказались под угрозой уничтожения. Византийские ученые бежали на запад, прихватив с собой те тексты, которые могли унести. Пережив нападения Цезаря, епископа Теофила, халифа Омара, а теперь еще и турок, несколько драгоценных книг «Арифметики» Диофанта проделали обратный путь в Европу. Судьба распорядилась так, чтобы сочинение Диофанта оказалось на письменном столе Пьера де Ферма.

Категория: ВЕЛИКАЯ ТЕОРЕМА ФЕРМА | Добавил: admin (07.11.2014)
Просмотров: 1086 | Теги: теорема Ферма, история теоремы Ферма, ученые-математики, теорема, интересная математика, дидактический материал по математик, изучаем математику | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru