Суббота, 30.11.2024, 04:39
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КАРТОЧКИ ПО АЛГЕБРЕ [23]
КАРТОЧКИ ПО ГЕОМЕТРИИ [17]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [84]
МАТЕМАТИКА В 4 КЛАССЕ [19]
МАТЕМАТИКА В 5 КЛАССЕ [114]
ВЕЛИКИЕ МАТЕМАТИКИ [79]
МАТЕМАТИЧЕСКАЯ ВСЕЛЕННАЯ [50]
МАТЕМАТИЧЕСКИЕ СКАЗКИ В КАРТИНКАХ [8]
КАРТОЧКИ ПО МАТЕМАТИКЕ [4]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА [188]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ [265]
ДЕНЬГИ [23]
ЛИЧНОСТЬ В НАУКЕ [87]
БЕЙСИК ДЛЯ МЛАДШИХ ШКОЛЬНИКОВ [40]
ИНФОРМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [82]
ПАМЯТКИ ПО МАТЕМАТИКЕ [193]
ЗАБАВНЫЕ ЗАДАЧИ ЯКОВА ПЕРЕЛЬМАНА [20]
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ [6]
БАЗЫ ДАННЫХ [74]
САМОУЧИТЕЛЬ "СЛЕПОЙ" ПЕЧАТИ НА КОМПЬЮТЕРЕ [20]
РАБОТАЕМ В Microsoft Office [18]
АППАРАТНЫЕ СРЕДСТВА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА [44]
ОСНОВЫ ИНФОРМАТИКИ ДЛЯ ШКОЛЬНИКОВ И СТУДЕНТОВ [77]
СОВЕТЫ ПО ОБУСТРОЙСТВУ КОМПЬЮТЕРА [72]
МАТЕМАТИКА В 6 КЛАССЕ [148]
МАТЕМАТИКА В 7 КЛАССЕ [85]
МАТЕМАТИКА В 8 КЛАССЕ [36]
МАТЕМАТИКА В 9 КЛАССЕ [153]
ЖИВОЙ УЧЕБНИК ГЕОМЕТРИИ [92]
УДИВИТЕЛЬНАЯ МАТЕМАТИКА [33]
ВЕЛИКАЯ ТЕОРЕМА ФЕРМА [45]
МАТЕМАТИКА В 11 КЛАССЕ [41]
КОНТРОЛЬНЫЕ РАБОТЫ [31]
ЗАНИМАТЕЛЬНЫЕ ЗАДАЧИ ПО ИНФОРМАТИКЕ ДЛЯ 5-6 КЛАССОВ [17]
ОБУЧАЮЩИЕ РАБОТЫ ПО ГЕОМЕТРИИ. 7 КЛАСС [19]
Главная » Статьи » ВЕЛИКАЯ ТЕОРЕМА ФЕРМА

Создатель Великой проблемы

Знаете, — признался дьявол, — даже самые лучшие математики на других планетах, а они, должен вам сказать, намного опередили ваших, не решили ее.

Взять хотя бы того парня на Сатурне, что очень похож на гриб на ходулях. Он в уме решает дифференциальные уравнения в частных производных. Так даже он не справился с этой задачей.

А. Порджес. Дьявол и Саймон Флэгг

Пьер де Ферма родился 20 августа 1601 года в городе Бомон-де-Ломань на юго-западе Франции. Его отец, Доминик Ферма, был состоятельным торговцем кожей, поэтому Пьер имел счастливую возможность получить престижное образование во французском монастыре Грансельва, а затем, в течение некоторого времени учиться в университете Тулузы. Не сохранилось никаких документов, свидетельствующих о том, что юный Ферма проявил блестящие способности к математике.

Под давлением семьи Ферма поступил на гражданскую службу и в 1631 году был назначен советником парламента Тулузы (conseiller au Parlement de Toulouse) — заведующим отдела прошений. Если местные жители хотели подать петицию королю по любому вопросу, то сначала им было нужно убедить Ферма и его коллег в важности причин, вынуждающих подавать петицию. Советники осуществляли живую связь между провинцией и Парижем. Помимо этого они были обязаны следить за тем, чтобы в провинциях исполнялись королевские указы, издававшиеся в столице. Ферма плодотворно трудился на своем посту и, судя по всем отзывам, выполнял свои обязанности прилежно, а к просителям относился доброжелательно.

Кроме того, в обязанности Ферма входил разбор судебных дел. Он занимал достаточно высокий пост для того, чтобы ему поручали ведение наиболее серьезных дел. Оценку его деятельности мы находим в записках английского математика Кенельма Дигби, которому понадобилось по некоторому делу навестить Ферма. В письме к их общему коллеге — Джону Валлису — Дигби сообщает, что их французский коллега чрезвычайно занят неотложными судебными делами, и намеченная встреча не представляется возможной.

«Правда, — пишет Дигби, — меня угораздило прибыть именно в тот день, когда судьи из Кастра собираются в Тулузе, где он [Ферма] исполняет обязанности Главного судьи Суверенного суда парламента, и с тех пор он занят самыми крупными делами огромной важности. Слушание одного из дел завершилось вынесением Ферма приговора, который наделал много шума. Речь шла об осуждении священника, дурно исполнявшего свои обязанности и приговоренного к сожжению на эшафоте. Тем дело и закончилось. Приговор был приведен в исполнение».

Ферма регулярно переписывался с Дигби и Валлисом. Как мы увидим далее, эти письма часто были довольно сухими, но они позволяют заглянуть в повседневную жизнь Ферма, в том числе и в его математические изыскания.

Ферма быстро продвигался по ступеням служебной лестницы и вошел в круг знати, о чем свидетельствует небольшая частица «де», появившаяся перед его именем: Пьер де Ферма. Успешная карьера Ферма связана не столько с его честолюбивыми устремлениями, сколько с его здоровьем. В то время в Европе свирепствовала чума, и те, кто выживал, поднимались по служебной лестнице, занимая места умерших. В 1652 году настал черед и самого Ферма: он тоже заболел чумой и был настолько плох, что его друг Бернар Медон даже известил нескольких коллег о кончине Ферма. Но вскоре Медон исправил свою ошибку в письме к голландцу Николасу Хайнсиусу: «Ранее я сообщил Вам о кончине Ферма. Но он все еще жив, и мы более не опасаемся его смерти, хотя еще совсем недавно считали его среди мертвых. Чума более не свирепствует между нами».

Помимо риска, которому во Франции XVII века подвергалось его здоровье, Ферма было необходимо выживать в условиях политических опасностей. Его назначение в парламент Тулузы последовало ровно через три года после того, как кардинал Ришелье стал премьер-министром Франции. Это был век заговоров и интриг, и каждый, кто был вовлечен в управление государством даже на провинциальном уровне, должен был с особой осторожностью следить за тем, чтобы не оказаться в хитросплетении махинаций кардинала.

Ферма избрал стратегию неукоснительного исполнения возложенных на него обязанностей и не беспокоился о себе. У него не было особых политических амбиций, и он делал все от него зависящее, чтобы по возможности оставаться в стороне от кипения парламентских страстей. Всю энергию, которую ему удавалось сохранить после исполнения служебных обязанностей, Ферма отдавал математике, и, когда не нужно было приговаривать священников к сожжению на эшафоте, Ферма с наслаждением предавался своему увлечению. По существу, Ферма был истинным ученым-любителем, человеком, которого Э.Т. Белл назвал «князем любителей». Но математический талант его был столь велик, что Джулиан Кулидж в своей книге «Математика великих любителей» исключил Ферма из числа любителей на том весьма веском основании, что тот «был настолько велик, что должен считаться профессионалом».

В начале XVII века математика еще только оживала после мрачного Средневековья, и занятия этой наукой в глазах общества котировались не очень высоко. Соответственно, отношение к математикам было лишено должного уважения, и многим математикам приходилось своими силами добывать средства для занятий любимой наукой. Например, Галилей не смог изучать математику в Пизанском университете и был вынужден искать себе частного преподавателя. Единственное учебное заведение в Европе, где математиков активно поощряли, был Оксфордский университет, учредивший в 1619 году Савильянскую кафедру геометрии. По правде сказать, математики XVII века в большинстве своем были любителями, но Ферма был особым случаем. Живя вдали от Парижа, он был изолирован даже от того небольшого математического сообщества которое тогда существовало (а в него входили такие фигуры, как Паскаль, Гассенди, Роберваль, Богран и отец Марен Мерсенн).

Отец Мерсенн внес небольшой вклад в теорию чисел, и тем не менее в истории математики XVII века он сыграл более важную, хотя и неоднозначную, роль, чем его более признанные и почитаемые коллеги. После вступления в 1611 году в орден минимов Мерсенн изучал математику, а затем преподавал этот предмет другим монахам и монахиням в монастыре ордена в Невере. Восемью годами позже Мерсенн переезжает в Париж и присоединяется к ордену Миним дель'Анносиад, неподалеку от Пале Ройяль — места, где, конечно же, собирались интеллектуалы. Мерсенн встречался с парижскими математиками, но их нежелание обсуждать научные проблемы с ним и между собой опечалило его.

Замкнутость парижских математиков была традицией, сохранившейся от косситов XVI века. Косситы были знатоками всевозможных вычислений. Купцы и деловые люди прибегали к их услугам для решения сложных задач, возникающих в связи с учетом товаров. Слово «коссит» восходит к итальянскому слову «cosa», означающему «вещь», так как косситы использовали символы для обозначения неизвестных величин, подобно тому, как современные математики обозначают неизвестную величину символом x. Все, кто в ту пору профессионально занимался решением задач, изобретали свои собственные хитроумные методы выполнения вычислений и держали их в тайне, чтобы сохранить свою репутацию единственных в своем роде людей, способных решать задачи того или иного типа.

Исключением был Никколо Тарталья, придумавший метод быстрого решения кубических уравнений. Он сообщил свое открытие Джироламо Кардано и взял с того клятву, что тот никому не откроет доверенную ему тайну. Через десять лет Кардано нарушил свое обещание и опубликовал метод Тартальи в книге «Ars Magna» (Великое искусство). Этот поступок Тарталья никогда не простил Кардано. Он порвал все отношения с Кардано, а последовавшее затем острое публичное разбирательство только укрепило остальных математиков в решимости хранить свои профессиональные тайны. Скрытный характер математических исследований сохранился до конца XIX века, и, как мы увидим в дальнейшем, имеются отдельные примеры, когда математические гении проводили свои исследования в тайне от коллег даже в XX веке.

По прибытии в Париж отец Мерсенн вознамерился покончить с обычаем математиков проводить исследования в тайне от своих коллег и стал всячески способствовать обмену идей между математиками и поощрять использование результатов одного математика в работе другого. Отец Мерсенн добился того, что математики начали регулярно проводить встречи. Позднее его группа стала тем ядром, вокруг которого сформировалась Французская академия. Если все приглашенные на заседание отвечали отказом, то Мерсенн все же старался собрать какую-то группу, сообщая математикам содержание писем и работ, присланных ему конфиденциально. Для человека в сутане такое поведение вряд ли было этичным, но отец Мерсенн оправдывал его тем, что обмен информацией идет на пользу математике и человечеству. Столь неблаговидные поступки, разумеется не могли не вызывать резкой полемики между монахом, руководствовавшимся благими намерениями, и «солистами» ученого мира, не склонными делиться с коллегами своими тайнами. Все это привело к разрыву давних отношений между Мерсенном и Декартом (продолжавшихся со времен совместной учебы в иезуитском Коллеже в Ла Флеше). Мерсенн обнародовал философские работы Декарта, которые могли бы быть истолкованы как оскорбительные для церкви, но к чести отца Мерсенна следует заметить, что он выступил в защиту Декарта, когда тот был подвергнут критике со стороны теологов (ранее Мерсенн поступил так же, когда церковные власти преследовали Галилея). В эпоху тотального господства религии и магии отец Мерсенн отстаивал рациональную мысль.

Мерсенн много путешествовал по Франции и далеко за ее пределами, повсюду распространяя вести о последних математических открытиях. В своих странствиях он, в частности, захотел встретиться с Пьером де Ферма, и их встреча, по-видимому, стала единственным контактом тулузского отшельника с другим математиком. Мерсенн оказал на «князя любителей» влияние, уступавшее, возможно, только «Арифметике» Диофанта (сборнику математических трактатов, доставшихся XVII веку в наследие от древних греков). Ферма никогда не расставался с «Арифметикой».

Даже когда от поездок пришлось отказаться, Мерсенн продолжал поддерживать отношения с Ферма и другими математиками, направляя им огромное количество писем. После смерти Мерсенна обнаружилось, что его апартаменты были битком набиты письмами от семидесяти восьми различных корреспондентов.

Несмотря на настойчивые просьбы отца Мерсенна, Ферма упорно отказывался публиковать свои доказательства. Публикация результатов и признание ничего не значили для него. Ферма получал удовлетворение от сознания того, что он в тиши своего кабинета без помех может создавать новые теоремы. Но скромный и замкнутый гений не был чужд озорству. В сочетании с его отстраненностью это иногда проявлялось при общении Ферма с другими математиками, когда он поддразнивал своих коллег: направляя им письма с формулировками последних теорем, он неизменно умалчивал о доказательствах. Ферма бросал своим современникам вызов, испытывая их способность найти недостающее доказательство.

То, что Ферма никогда не раскрывал своих доказательств, вызывало у его коллег чувство горького разочарования. Рене Декарт называл Ферма «хвастуном», а англичанин Джон Валлис называл его «проклятым французом». К несчастью для англичан, Ферма доставляло особое удовольствие разыгрывать своих коллег по ту сторону Ла-Манша.

Помимо удовольствия, которое доставляло Ферма поддразнивание своих коллег, его обыкновение формулировать проблему и скрывать ее решение имело под собой и более практическую мотивацию. Прежде всего оно означало, что Ферма не имел времени подробно излагать полученное им доказательство; он торопился перейти к решению следующей проблемы. Кроме того, такая тактика избавляла Ферма от мелких придирок со стороны ревнивых коллег. Будучи опубликованным, доказательство становится доступным для изучения и критики со стороны всех и каждого, кто хотя бы немного смыслит в предмете. Когда Блез Паскаль стал настаивать на публикации некоторых из работ Ферма, тулузский отшельник возразил: «Какая бы из моих работ ни считалась достойной опубликования, я вовсе не желаю, чтобы мое имя появлялось в печати». Ферма был замкнутым гением, пожертвовавшим славой ради того, чтобы критики не досаждали ему мелочными придирками.

В переписке Ферма с Паскалем (единственный случай, когда Ферма обсуждал идеи с кем-нибудь, кроме Мерсенна) речь шла о рождении нового раздела математики — теории вероятностей. Паскаль ввел математического отшельника в круг проблем новой дисциплины, и поэтому ему, несмотря на пристрастие к уединению, пришлось поддерживать диалог. Совместными усилиями Ферма и Паскаль получили первые доказательства и обнаружили в теории вероятностей незыблемые истины, хотя неопределенность — суть предмета этой теории. Интерес Паскаля к теории вероятностей пробудил профессиональный игрок из Парижа Антуан Гомбо, шевалье де Мере, который поставил перед Паскалем задачу, имевшую отношение к следующей азартной игре. Игроки по очереди бросают игральную кость и замечают, сколько очков выпадает при броске. Выигрывает (и забирает стоящие на кону деньги) тот из игроков, кто первым наберет определенное количество очков.

Гомбо играл в эту игру с партнером, но оба вынуждены были прекратить игру под давлением непредвиденных обстоятельств. Возникла проблема: как разделить деньги, стоявшие на кону? Простое решение состояло бы в том, чтобы всю сумму, стоявшую на кону, забрал тот из партнеров, который успел набрать больше очков, но Гомбо спрашивал у Паскаля, не существует ли более справедливого способа разделить деньги. Паскалю было необходимо вычислить вероятность каждого из партнеров на выигрыш в случае продолжения игры в предположении, что каждый партнер набирал бы последующие очки с одинаковой вероятностью. Деньги, стоявшие на кону, следовало бы поделить пропорционально вычисленным вероятностям.

До XVI века законы вероятности определялись исходя из интуиции и опыта игроков, но Паскаль затеял переписку с Ферма с целью открыть математические правила, которые более точно описывают законы случая. Три столетия спустя Бертран Рассел так прокомментировал этот явный оксиморон: «Как только мы осмеливаемся говорить о законах случая? Разве случай — не антитеза всякому закону?»

Французы исследовали задачу Гомбо и вскоре поняли, что она сравнительно проста и ее можно строго решить, определив все потенциальные исходы игры и приписав каждому исходу соответствующую вероятность. И Паскаль, и Ферма сумели независимо решить задачу Гомбо, но их сотрудничество ускорило решение и позволило им глубже исследовать другие, более тонкие и трудные, вопросы теории вероятностей.

Задачи теории вероятностей иногда кажутся парадоксальными, потому что математическое решение (правильный ответ) нередко не согласуется с интуицией. Такие провалы интуиции могут показаться удивительными, поскольку «выживание наиболее приспособленного» должно было оказать сильное эволюционное давление на развитие мозга, способного от природы анализировать проблемы теории вероятностей. Можно представить себе наших предков, подкрадывающихся к олененку и решающих, стоит или не стоит им нападать на него. Велик ли риск, что олень бросится защищать свое чадо и нападет на обидчика? С другой стороны, какова вероятность, что представится более удобный случай добыть свежее мясо на обед, если нападение на олененка считать излишне рискованным? Талант к оценке вероятностей должен быть неотъемлемой частью нашей генетической структуры, и тем не менее наша интуиция нередко заставляет нас делать неверные заключения.

Например, в сильнейшем противоречии с интуицией находится задача о вероятности совпадения дней рождения. Представьте себе футбольное поле, на котором находятся 23 человека: игроки двух команд (22 человека) и судья. Какова вероятность, что у двух из них дни рождения совпадают?

Поскольку речь идет о 23 людях, а выбирать приходится из 365 дней, кажется маловероятным, чтобы у кого-нибудь из тех, кто находится на футбольном поле, дни рождения совпали. Если попросить кого-нибудь оценить вероятность совпадения числом, то большинство людей оценят эту вероятность не выше 10 %. В действительности же правильный ответ гласит: чуть выше 50 %. Иначе говоря, если взвешивать на весах теории вероятностей, то вероятность совпадения дней рождения все-таки чуть-чуть больше, чем вероятность того, что никакие два дня рождения не совпадают.

Причина столь высокой вероятности совпадения двух дней рождения заключается в том, что число способов, которыми людей можно разбить на пары, гораздо больше числа самих людей. Если требуется найти совпадающие дни рождения, то необходимо знать не количество людей, а число пар, на которые их можно разбить. Так как число людей на футбольном поле равно 23, то число пар равно 253. Например, первого из находящихся на футбольном поле можно включать в одну пару с любым из 22 других, что дает для начала 22 пары. Второму можно подобрать в пару любого из 21 остальных людей на поле (поскольку мы уже сосчитали второго один раз, когда подсчитывали число пар с участием первого, число пар со вторым следует уменьшить на единицу), и мы получаем еще 20 пар. Продолжая рассуждать так же, мы в итоге получим 253 пары.

То, что вероятность совпадения дней рождения в группе из 23 людей оказывается больше 50 %, противоречит интуиции. Тем не менее с точки зрения математики ответ правильный. Именно на такие «странные», противоречащие интуитивным, представления опираются букмекеры и игроки, используя опрометчивость азартных людей. В следующий раз, когда вам случится быть на заседании или званом обеде, на котором окажется 23 участника, можете заключить пари, что среди присутствующих найдутся два человека, дни рождения которых совпадают. Следует иметь в виду, что в группе из 23 человек вероятность совпадения двух дней рождения лишь слегка превышает 50 %, но с увеличением численности группы вероятность совпадения быстро увеличивается.

Ферма и Паскаль заложили основы тех правил, которым подчиняются все азартные игры и которые могут быть использованы игроками, чтобы выработать идеальную стратегию игры и стратегию заключения пари. Кроме того, обнаруженные Ферма и Паскалем законы теории вероятностей нашли приложения в целом ряде областей человеческой деятельности — от спекулятивной игры на фондовой бирже до оценивания вероятности ядерной катастрофы.

Паскаль был даже убежден, что мог бы применить свои теории для обоснования веры в Бога. Он утверждал, что «азарт, который испытывает игрок при заключении пари равен произведению той суммы, которую он может выиграть, и вероятности выигрыша». Далее Паскаль утверждал, что возможный выигрыш вечного блаженства обладает бесконечно большой ценностью, а вероятность попасть в царство небесное, если вести добродетельную жизнь, заведомо конечна. Следовательно, по определению Паскаля, религия — игра бесконечно азартная и стоящая того, чтобы в нее играли, так как произведение бесконечно большого потенциального выигрыша на конечную вероятность бесконечно велико.

Разделяя с Паскалем честь быть отцом-основателем теории вероятностей, Ферма по праву может также считаться одним из основателей еще одной области математики — дифференциального исчисления. Дифференциальное исчисление позволяет вычислять скорость изменения, или производную, одной величины относительно другой (например, скорость изменения расстояния относительно времени, известную просто как скорость). Для математиков величины, как правило, абстрактны и неосязаемы, но труды Ферма имели своим следствием подлинный переворот в физике. Математика Ферма позволила физикам лучше понять, что такое скорость, и какова ее связь с другими фундаментальными величинами, такими, как ускорение — скорость изменения скорости относительно времени.

Дифференциальное исчисление оказывает сильное влияние на экономику. Инфляция — это скорость изменения цены, известная как производная цены. Кроме того, экономистов часто интересует скорость изменения инфляции, известная как вторая производная цены. Эти термины часто используются политиками, и математик Хуго Росси однажды заметил: «Осенью 1972 года президент Никсон заявил, что скорость роста инфляции пошла на убыль. Это был первый случай, когда правящий президент использовал третью производную, чтобы увеличить свой шанс на переизбрание».

На протяжении более двух столетий принято было считать, что Исаак Ньютон открыл дифференциальное исчисление независимо от Ферма, не зная о его работах. Но в 1934 году Луис Треншар Мур обнаружил заметку, которая позволила внести в вопрос о приоритете полную ясность и воздать Ферма по заслугам. Ньютон писал, что, разрабатывая дифференциальное исчисление, он опирался на «метод построения касательных месье Ферма». С XVIII века дифференциальное исчисление использовалось для описания закона всемирного тяготения Ньютона и его законов механики, зависящих от расстояния, скорости и ускорения.

Одного лишь участия в создании дифференциального исчисления и теории вероятностей было бы более чем достаточно, чтобы обеспечить Ферма место в зале славы математики, но его величайшее достижение лежит в другой области математики.

Дифференциальное исчисление используется при посылке космических кораблей на Луну, теория вероятностей — при оценке рисков страховых компаний, но Ферма питал глубочайшую любовь к разделу, который не обещал никаких приложений — теории чисел. Ферма был обуян страстью — ему хотелось во что бы то ни стало понять свойства чисел и отношения между ними. Теория чисел — наиболее чистая древнейшая область математики, и Ферма продолжал развивать этот раздел математики, доставшийся ему в наследство от Пифагора.

Категория: ВЕЛИКАЯ ТЕОРЕМА ФЕРМА | Добавил: admin (07.11.2014)
Просмотров: 968 | Теги: теорема Ферма, история теоремы Ферма, ученые-математики, теорема, интересная математика, дидактический материал по математик, изучаем математику | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 2
    Гостей: 2
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru