Воскресенье, 22.12.2024, 04:01
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КАРТОЧКИ ПО АЛГЕБРЕ [23]
КАРТОЧКИ ПО ГЕОМЕТРИИ [17]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [84]
МАТЕМАТИКА В 4 КЛАССЕ [19]
МАТЕМАТИКА В 5 КЛАССЕ [114]
ВЕЛИКИЕ МАТЕМАТИКИ [79]
МАТЕМАТИЧЕСКАЯ ВСЕЛЕННАЯ [50]
МАТЕМАТИЧЕСКИЕ СКАЗКИ В КАРТИНКАХ [8]
КАРТОЧКИ ПО МАТЕМАТИКЕ [4]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА [188]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ [265]
ДЕНЬГИ [23]
ЛИЧНОСТЬ В НАУКЕ [87]
БЕЙСИК ДЛЯ МЛАДШИХ ШКОЛЬНИКОВ [40]
ИНФОРМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [82]
ПАМЯТКИ ПО МАТЕМАТИКЕ [193]
ЗАБАВНЫЕ ЗАДАЧИ ЯКОВА ПЕРЕЛЬМАНА [20]
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ [6]
БАЗЫ ДАННЫХ [74]
САМОУЧИТЕЛЬ "СЛЕПОЙ" ПЕЧАТИ НА КОМПЬЮТЕРЕ [20]
РАБОТАЕМ В Microsoft Office [18]
АППАРАТНЫЕ СРЕДСТВА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА [44]
ОСНОВЫ ИНФОРМАТИКИ ДЛЯ ШКОЛЬНИКОВ И СТУДЕНТОВ [77]
СОВЕТЫ ПО ОБУСТРОЙСТВУ КОМПЬЮТЕРА [72]
МАТЕМАТИКА В 6 КЛАССЕ [148]
МАТЕМАТИКА В 7 КЛАССЕ [85]
МАТЕМАТИКА В 8 КЛАССЕ [36]
МАТЕМАТИКА В 9 КЛАССЕ [153]
ЖИВОЙ УЧЕБНИК ГЕОМЕТРИИ [92]
УДИВИТЕЛЬНАЯ МАТЕМАТИКА [33]
ВЕЛИКАЯ ТЕОРЕМА ФЕРМА [45]
МАТЕМАТИКА В 11 КЛАССЕ [41]
КОНТРОЛЬНЫЕ РАБОТЫ [31]
ЗАНИМАТЕЛЬНЫЕ ЗАДАЧИ ПО ИНФОРМАТИКЕ ДЛЯ 5-6 КЛАССОВ [17]
ОБУЧАЮЩИЕ РАБОТЫ ПО ГЕОМЕТРИИ. 7 КЛАСС [19]
Главная » Статьи » ВЕЛИКИЕ МАТЕМАТИКИ

Кантор Георг
Георг Кантор (нем. Georg Ferdinand Ludwig Philipp Cantor, 3 марта 1845, Санкт-Петербург — 6 января 1918, Галле (Заале)) — немецкий математик, родившийся в России. Он наиболее известен как создатель теории множеств, ставшей краеугольным камнем в математике. Кантор ввёл понятие взаимно-однозначного соответствия между элементами множеств, дал определения бесконечного и вполне-упорядоченного множеств и доказал, что действительных чисел «больше», чем натуральных. Теорема Кантора, фактически, утверждает существование «бесконечности бесконечностей». Он определил понятия кардинальных и порядковых чисел и их арифметику. Его работа представляет большой философский интерес, о чём и сам Кантор прекрасно знал.

Теория Кантора о трансфинитных числах первоначально была воспринята настолько нелогичной, парадоксальной и даже шокирующей, что натолкнулась на резкую критику со стороны математиков-современников, в частности, Леопольда Кронекера и Анри Пуанкаре; позднее — Германа Вейля и Лёйтзена Брауэра, а Людвиг Витгенштейн высказал возражения философского плана (см. Споры о теории Кантора). Некоторые христианские богословы (особенно представители неотомизма) увидели в работе Кантора вызов уникальности абсолютной бесконечности природы Бога, приравняв однажды теорию трансфинитных чисел и пантеизм.Критика его трудов была порой очень агрессивна: так, Пуанкаре называл его идеи «тяжёлой болезнью», поражающей математическую науку; а в публичных заявлениях и личных выпадах Кронекера в адрес Кантора мелькали иногда такие эпитеты, как «научный шарлатан», «отступник» и «развратитель молодёжи». Десятилетия спустя после смерти Кантора, Витгенштейн с горечью отмечал, что математика «истоптана вдоль и поперёк разрушительными идиомами теории множеств», которое он отклоняет как «шутовство», «смехотворное» и «ошибочное». Периодически повторяющиеся с 1884 года и до конца дней Кантора приступы депрессии некоторое время ставили в вину его современникам, занявшим чересчур агрессивную позицию, но сейчас считается, что эти приступы, возможно, были проявлением биполярного расстройства.

Резкой критике противостояли всемирная известность и одобрение. В 1904 году Лондонское королевское общество наградило Кантора Медалью Сильвестра, высшей наградой, которую оно могло пожаловать. Сам Кантор верил в то, что теория трансфинитных чисел была сообщена ему свыше. В своё время, защищая её от критики, Давид Гильберт смело заявил: «Никто не изгонит нас из рая, который основал Кантор».

Кантор родился в 1845 году в Западной колонии торговцев в Санкт-Петербурге и рос там до 11-летнего возраста. Георг был старшим из шести детей. Он виртуозно играл на скрипке, унаследовав от своих родителей значительные художественные и музыкальные таланты. Отец семейства был членом Петербургской фондовой биржи. Когда он заболел, семья, рассчитывая на более мягкий климат, в 1856 году переехала в Германию: сначала в Висбаден, а потом во Франкфурт. В 1860 году Георг закончил с отличием реальное училище в Дармштадте; учителя отмечали его исключительные способности к математике, в частности, к тригонометрии. В 1862 году будущий знаменитый учёный поступил в Федеральный политехнический институт в Цюрихе (ныне — Швейцарская высшая техническая школа Цюриха). Через год умер его отец; получив солидное наследство, Георг переводится в Берлинский университет имени Гумбольдта, где начинает посещать лекции таких знаменитых учёных, как Леопольд Кронекер, Карл Вейерштрасс и Эрнст Куммер. Лето 1866 года он провёл в Гёттингенском университете, тогда, да и сейчас, - очень важного центра математической мысли. В 1867 году Берлинский университет присвоил ему степень доктора философии за работу по теории чисел «De aequationibus secundi gradus indeterminatis».

Учёный и исследователь

После непродолжительной работы в качестве преподавателя в Берлинской школе для девочек, Кантор занимает место в Галльском университете Мартина Лютера, где и пройдёт вся его карьера. Необходимую для преподавания хабилитацию он получил за свою диссертацию по теории чисел.

В 1874 году Кантор женился на Валли Гуттманн (Vally Guttmann). У них было 6 детей, последний из которых родился в 1886 году. Несмотря на скромное академическое жалование, Кантор был в состоянии обеспечить семье безбедное проживание благодаря полученному от отца наследству. В продолжение своего медового месяца в горах Гарца, Кантор много времени проводил за математическими беседами с Рихардом Дедекиндом, с которым завязал дружбу ещё двумя годами ранее во время отпуска, в Швейцарии.

Кантор получил звание Внештатного Профессора в 1872 году, а в 1879 стал Полным Профессором. Получить это звание в 34 года было большим достижением, но Кантор мечтал о должности в более престижном университете, например, Берлинском — в то время ведущем университете Германии. Однако его теории встречают серьезную критику, и мечтам не удаётся воплотиться в жизнь. Кронекер, возглавлявший кафедру математики Берлинского университета, всё больше и больше был не в восторге от перспективы получить такого коллегу, как Кантор, воспринимая его как «развратителя молодёжи», наполнявшего своими идеями головы молодого поколения математиков. Более того, Кронекер, будучи заметной фигурой в математическом сообществе и бывшим учителем Кантора, был в корне не согласен с содержанием теорий последнего. Кронекер, который рассматривается сейчас как один из основателей конструктивной математики, с неприязнью относился к канторовской теории множеств, поскольку та утверждала существование множеств, удовлетворяющих неким свойствам, — без предоставления конкретных примеров множеств, элементы которых бы действительно удовлетворяли этим свойствам. Кантор понял, что позиция Кронекера не позволит ему даже уйти из Галльского университета.

В 1881 году Эдуард Гейне, коллега Кантора, умер, оставив после себя вакантную должность. Руководство университета приняло предложение Кантора пригласить на этот пост Рихарда Дедекинда, Генриха Вебера или Франца Мертенца (именно в таком порядке), но все они отказались. В итоге пост занял Фридрих Вангерин, однако он никогда не был другом Кантора.

В 1882 году научная переписка между с Дедекиндом оборвалась, вероятно, как следствие отказа последнего от должности в Галле. В то же время Кантор установил другую важную переписку, с Гёста Миттаг-Леффлером, жившим в Швеции, и скоро начал публиковаться в его журнале «Acta mathematica». Однако в 1885 году Миттаг-Леффлёр встревожился относительно философского подтекста и новой терминологии в одной статье, присланной ему Кантором для печати. Он попросил Кантора отозвать свою статью, пока та ещё проходила корректуру, написав, что эта статья «опередила время примерно лет на сто». Кантор согласился, но при этом отметил в переписке с другим человеком:

Согласно Миттаг-Лиффлёру, я должен подождать до 1984 года, что кажется мне слишком большой просьбой!.. Но конечно, отныне я никогда ничего не хочу знать об «Acta mathematica».
Оригинальный текст (англ.)

Вслед за этим Кантор резко оборвал отношения и переписку с Миттаг-Леффлером, проявляя склонность воспринимать исполненную благих намерений критику как глубокое личное оскорбление.

Первый известный приступ депрессии Кантор испытал в 1884 году. Критика его работ тяготила его разум: каждое из 52 писем, которые он написал Маттаг-Леффлёру в 1884 году, подверглось атаке Кронекера. Отрывок из одного письма показывает степень ущерба, нанесённого ощущению уверенности Кантора в себе:

Не знаю, когда вернусь к продолжению моей научной работы. Сейчас я не могу абсолютно ничего делать с ней, и ограничил себя лишь самым необходимым занятием — чтением лекций; насколько бы я был счастливее быть активнее в научном плане, если бы только у меня была необходимая свежесть мыслей.
Оригинальный текст (англ.)

Этот эмоциональный кризис заставил его сместить свой интерес от математики к философии и начать читать лекции по ней. Кроме того, Кантор стал интенсивно изучать английскую литературу эпохи Елизаветы; он пытался доказать, что те пьесы, которые приписывались Шекспиру, на самом деле написал Френсис Бэкон (см. Вопрос авторства Шекспира); результаты по этой работе в конце концов были опубликованы в двух проспектах 1896 и 1897 годов.

Вскоре после этого Кантор восстановился, и сразу же сделал несколько важных дополнений к своей теории, в частности, свои знаменитые диагональный аргумент и теорему. Однако он уже никогда не сможет достичь того высокого уровня, который был в его работах 1874—1884 годов. В конце концов он обратился с предложением о мире к Кронекеру, которое тот благосклонно принял. Тем не менее, разделявшие их философские расхождения и трудности остались. Некоторое время считалось, что периодические приступы депрессии Кантора связаны с жёстким неприятием его работ со стороны Кронекера. Но хотя его депрессия и оказывала большое влияние на математические беспокойства Кантора и его проблемы с некоторыми людьми, маловероятно, что всё это было её причиной. Напротив, в качестве основной причины его непредсказуемого настроения утвердили его посмертный диагноз — маниакально-депрессивный психоз.

В 1890 году Кантор способствовал организации Германского математического общества (Deutsche Mathematiker-Vereinigung) и был председателем первого его сбора в Галле в 1891 году; в то время его репутация была достаточно сильна, даже несмотря на оппозицию Кронекера, чтобы его выбрали первым президентом этого общества. Закрыв глаза на свою неприязнь к Кронекеру, Кантор пригласил его выступить с докладом, но Кронекер не смог этого сделать по причине смерти своей супруги.

Объекты, названные в честь Кантора

* Канторово множество — континуальное множество нулевой меры на отрезке;
* Функция Кантора (Канторова лестница);
* Нумерующая функция Кантора — отображение декартовой степени множества натуральных чисел в само себя;
* Теорема Кантора (см. также Теорема Кантора (значения)) о том, что мощность множества всех подмножеств данного множества строго больше мощности самого множества;
* Теорема Кантора — Бернштейна о равномощности множеств A и B при условии равномощности A подмножеству B и равномощности B подмножеству A;
* Теорема Кантора — Гейне о равномерной непрерывности непрерывной функции на компакте;
* Теорема Кантора — Бендиксона
* Медаль Кантора — математическая награда, вручаемая Немецким математическим обществом;
* а также другие математические объекты.

Категория: ВЕЛИКИЕ МАТЕМАТИКИ | Добавил: admin (05.07.2013)
Просмотров: 1350 | Теги: ученые-математики, биографии математиков, учителю, великие математики, открытия в математике, математика в школе, дидактический материал по математик | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru