Воскресенье, 11.04.2021, 07:15
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КАРТОЧКИ ПО АЛГЕБРЕ [23]
КАРТОЧКИ ПО ГЕОМЕТРИИ [17]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [84]
МАТЕМАТИКА В 4 КЛАССЕ [19]
МАТЕМАТИКА В 5 КЛАССЕ [114]
ВЕЛИКИЕ МАТЕМАТИКИ [79]
МАТЕМАТИЧЕСКАЯ ВСЕЛЕННАЯ [50]
МАТЕМАТИЧЕСКИЕ СКАЗКИ В КАРТИНКАХ [8]
КАРТОЧКИ ПО МАТЕМАТИКЕ [4]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА [188]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ [265]
ДЕНЬГИ [23]
ЛИЧНОСТЬ В НАУКЕ [87]
БЕЙСИК ДЛЯ МЛАДШИХ ШКОЛЬНИКОВ [40]
ИНФОРМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [82]
ПАМЯТКИ ПО МАТЕМАТИКЕ [193]
ЗАБАВНЫЕ ЗАДАЧИ ЯКОВА ПЕРЕЛЬМАНА [20]
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ [6]
БАЗЫ ДАННЫХ [74]
САМОУЧИТЕЛЬ "СЛЕПОЙ" ПЕЧАТИ НА КОМПЬЮТЕРЕ [20]
РАБОТАЕМ В Microsoft Office [18]
АППАРАТНЫЕ СРЕДСТВА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА [44]
ОСНОВЫ ИНФОРМАТИКИ ДЛЯ ШКОЛЬНИКОВ И СТУДЕНТОВ [77]
СОВЕТЫ ПО ОБУСТРОЙСТВУ КОМПЬЮТЕРА [72]
МАТЕМАТИКА В 6 КЛАССЕ [148]
МАТЕМАТИКА В 7 КЛАССЕ [85]
МАТЕМАТИКА В 8 КЛАССЕ [36]
МАТЕМАТИКА В 9 КЛАССЕ [153]
ЖИВОЙ УЧЕБНИК ГЕОМЕТРИИ [92]
УДИВИТЕЛЬНАЯ МАТЕМАТИКА [33]
ВЕЛИКАЯ ТЕОРЕМА ФЕРМА [45]
МАТЕМАТИКА В 11 КЛАССЕ [41]
КОНТРОЛЬНЫЕ РАБОТЫ [31]
ЗАНИМАТЕЛЬНЫЕ ЗАДАЧИ ПО ИНФОРМАТИКЕ ДЛЯ 5-6 КЛАССОВ [17]
ОБУЧАЮЩИЕ РАБОТЫ ПО ГЕОМЕТРИИ. 7 КЛАСС [19]
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Главная » Статьи » УДИВИТЕЛЬНАЯ МАТЕМАТИКА

Встречные поезда

Через несколько дней после того, как мистер Джонсон нанес визит врачу, тот позвонил ему по телефону.

— Не могли бы вы заглянуть сегодня ко мне в приемную? — спросил врач. — Мне очень хотелось бы обсудить с вами еще один вопрос относительно железной дороги.

— С удовольствием, — охотно согласился мистер Джонсон, у которого после выхода на пенсию свободного времени стало хоть отбавляй.

— Я хочу предложить вашему вниманию одну задачку, о которой узнал от моего пациента, — сообщил доктор, когда мистер Джонсон устроился в кресле и вопросительно посмотрел на хозяина кабинета. — В разговоре с ним я рассказал о тех треволнениях, которые вам пришлось пережить из-за поездов, идущих на восток и на запад. В ответ пациент сообщил мне, что когда он едет в своей автомашине на работу, ему приходится пересекать железную дорогу — одноколейку, по которой в основном курсируют товарные поезда. Каждый такой поезд насчитывает много вагонов и тащится через переезд необычайно медленно. Моему пациенту приходится подолгу простаивать перед закрытым шлагбаумом, глядя на мерцающие сигнальные огни и еле движущуюся вереницу вагонов. Мой пациент мечтает о прокладке еще одной, второй, колеи. Это позволило бы, по его мнению, товарным поездам идущим на восток и на запад, лишь иногда встречаться на переезде, отчего общее время ожидания для водителей автомашин сократилось бы. А как по-вашему, сократилось бы время ожидания для автотранспорта от прокладки второй колеи?

— Разумеется, сократилось бы, — подтвердил старый машинист. — Если общее число поездов останется неизменным, то из-за случайных перекрытий встречных поездов у переезда средняя продолжительность простоя автотранспорта у переезда должна сократиться. Ведь это так ясно! Если два поезда минуют переезд одновременно, то время, которое потратил бы автомобилист, пропуская их, сократилось бы вдвое — до времени, которое ему пришлось бы ждать у шлагбаума, пока пройдет один поезд.

— Но так было бы только в том случае, если бы оба поезда в точности «перекрылись», т. е. одновременно въезжали на переезд и одновременно покидали его. В другом предельном случае ситуация была совершенно другой. Представьте себе, что локомотив одного въезжает на переезд в тот самый момент, когда его покидает тормозная площадка последнего вагона другого поезда. Что тогда?

— Ничего особенного. Мне кажется, этот случай ничем не отличается от того, когда оба поезда вообще не перекрываются.

— О нет! Тут вы, мистер Джонсон, глубоко заблуждаетесь. Я могу доказать это вам с помощью нехитрой арифметики. Предположим, что в среднем в каждом направлении за один час проходит один поезд и что каждый поезд минует переезд за 6 минут, и вычислим, сколько приходится ждать автомобилисту у закрытого шлагбаума в этом случае. Вероятность прибыть к закрытому шлагбаума (во время прохождения поезда через переезд) и любоваться мерцающими красными фонарями равна 1/10. Поскольку автомобилист с равной вероятностью может прибыть к переезду, когда поезд только выезжает на переезд или покидает его, то среднее время ожидания у закрытого шлагбаума составляет 3 минуты. Таким образом, в этом случае ждать в среднем, пока поезд минует переезд, придется 3 минуты.

Предположим теперь, что встречные поезда всегда немного перекрываются, минуя переезд — локомотив одного поезда чуть-чуть заходит за тормозную площадку последнего вагона другого. Как нетрудно понять, в этом случае все происходит так, как если бы поездов было вдвое меньше, но каждый поезд стал бы вдвое длиннее.

— Какая разница? — возразил мистер Джонсон.

— Разница есть, причем большая! Разумеется, вероятность подъехать к закрытому шлагбауму на переезде остается прежней. Но ждать у закрытого шлагбаума в этом случае пришлось бы вдвое дольше.

Таким образом, подъехав к переезду и увидев, что встречные поезда перекрылись только локомотивами, автомобилист вынужден будет ждать вдвое дольше.

— Понимаю, — задумчиво проговорил старый машинист, — если бы между поездами был промежуток в несколько минут, то автомобилист, пропустив один поезд, мог бы миновать переезд до того, как другой поезд прибудет к переезду, а если поезда перекрываются, то никакого промежутка между ними не получается.

— Рад, что вы обратили внимание на это важное обстоятельство, — улыбнулся врач. — Итак, мы пришли к заключению, что в случае точного перекрытия встречных поездов среднее время ожидания у переезда сокращается вдвое, а если поезда едва перекрываются, то время ожидания удваивается.

— А что происходит, если поезда на переезде перекрываются ровно наполовину? — поинтересовался мистер Джонсон.

— Давайте выясним. В этом случае поездов становится как будто вдвое меньше, но длина каждого поезда увеличивается на 50 %, т. е. поезд как бы становится в полтора раза длиннее. В этом случае вероятность подъехать к переезду, когда через него проходит поезд, нужно умножить на 1,5 / 2, а среднее время ожидания увеличивается в полтора раза. Итого: среднее время ожидания изменится в 1,5 / 2 * 1,5 = 1,125 раза. Таким образом, если встречные поезда на переезде перекрываются наполовину, то время ожидания увеличивается на 12,5 %.

— Подумать только! — с удивлением заметил мистер Джонсон. — Даже когда поезда перекрываются наполовину, автомобилисту приходится ждать дольше.

— Как видите, мистер Джонсон, время ожидания существенно зависит от того, насколько перекрываются встречные поезда на переезде. Давайте построим график, ведь теперь мы знаем, во сколько увеличивается время ожидания при полном перекрытии поездов, при их перекрытии наполовину и при едва начавшемся перекрытии, — предложил врач, доставая карандаш. — Как видите, полная площадь, соответствующая увеличению среднего времени ожидания (треугольник А), гораздо больше, чем полная площадь, соответствующая уменьшению среднего времени ожидания (треугольник В). Отсюда следует, что в среднем перекрытие встречных поездов заставляет автомобилистов ждать у переезда дольше, чем в том случае, когда одно и то же количество поездов курсирует по одноколейному пути в обоих направлениях.


Категория: УДИВИТЕЛЬНАЯ МАТЕМАТИКА | Добавил: admin (06.11.2014)
Просмотров: 488 | Теги: интересные задания по математике, математика в рассказах, хрестоматия по математике, занимательная математика, дидактический материал по математик | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ

ИНФОРМАТИКА В ШКОЛЕ

ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru