Зная; что треугольники равны по двум
сторонам и углу между ними, мы можем помощью циркуля и линейки делить
данный отрезок на две равные части.
Если, например, требуется разделить пополам отрезок А В (черт. 69), то помещают острие циркуля в точки А я В и описывают вокруг них, как около центров, одинаковым радиусом две пересекающиеся дуги (черт. 70). Точки их пересечения С и Dсоединяют прямою, которая и АВ пополам: АО = ОВ.
Чтобы убедиться, что отрезки АО и ОВ должны быть равны, соединим точки C и Dс концами А и В отрезка (черт. 71). Получатся два треугольника ACDи BCD, у которых три стороны соответственно равны: АС = ВС; AD= BD; CD – общая,
т. е. принадлежит обоим треугольникам. Отсюда вытекает полное равенство
указанных треугольников, а следовательно и равенство всех углов.
Значит, между прочим, равны углы ACDи BCD. Сравнивая теперь треугольники АСО и ВСО, видим, что у них сторона ОС – общая, AC= СB, а угол между ними АСО = уг. ВСО. По двум сторонам и углу между ними треугольники равны; следовательно, равны стороны АО и ОВ, т. е. точка О есть середина отрезка АВ. |