Если из точки проведен к прямой перпендикуляр, – например, CD (черт. 152), то точка D называется
о с н о в а н и е м п е р п е н д и к у л я р а. Всякая другая линия, проведенная через точку С к прямой А В, встречает ее не под прямым углом (почему?) и называется наклонной; например, СЕ, CF – наклонные. Точки Е, F – о с н о в а н и я наклонных.
Расстояния DE, DF от основания перпендикуляра до оснований наклонных называются проекциями этих наклонных: DE – проекция наклонной СЕ, a DF – проекция наклонной CF.
Рассмотрим некоторые соотношения между перпендикуляром, наклонными и их проекциями.
1) Перпендикуляр короче каждой наклонной, проведенной к той же прямой из той же точки. Например, CD на черт. 152 короче, чем CF и чем СЕ,
потому что катет короче гипотенузы. Перпендикуляр есть поэтому самое
короткое расстояние от точки до прямой. Когда говорят о расстоянии точки
от какой-нибудь прямой, то имеют в виду именно к р а т ч а й ш е е
расстояние,
т. е. п е р п е н д и к у л я р из точки на эту прямую.
2) Если из какой-нибудь точки проведены к прямой две наклонные о д и н а к о в о й длины, – напр., АВ и АС на черт. 153, то проекции этих наклонных р а в н ы. В самом деле: треугольники ABD и ACD имеют общий катет AD, равные гипотенузы АВ и АС и кроме того, уг. B= уг. С (§ 52); поэтому они равны (СУС), и значит, катет ОВ = катету DC.
3) Обратно: если равны проекции двух
наклонных, проведенных к прямой из одной точки, то эти наклонные имеют
одинаковую длину. Если бы на черт. 153 нам не было известно, что
наклонные АВ и АС равны, но взамен этого мы знали бы, что BD= DC, то установили бы равенство АВ и АС из равенства прямоугольных треугольников ADB и ADC(СУС). |