Понедельник, 25.01.2021, 22:27
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
КАРТОЧКИ ПО АЛГЕБРЕ [23]
КАРТОЧКИ ПО ГЕОМЕТРИИ [17]
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [84]
МАТЕМАТИКА В 4 КЛАССЕ [19]
МАТЕМАТИКА В 5 КЛАССЕ [114]
ВЕЛИКИЕ МАТЕМАТИКИ [79]
МАТЕМАТИЧЕСКАЯ ВСЕЛЕННАЯ [50]
МАТЕМАТИЧЕСКИЕ СКАЗКИ В КАРТИНКАХ [8]
КАРТОЧКИ ПО МАТЕМАТИКЕ [4]
ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА [188]
МАТЕМАТИЧЕСКИЕ ГОЛОВОЛОМКИ [265]
ДЕНЬГИ [23]
ЛИЧНОСТЬ В НАУКЕ [87]
БЕЙСИК ДЛЯ МЛАДШИХ ШКОЛЬНИКОВ [40]
ИНФОРМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ [82]
ПАМЯТКИ ПО МАТЕМАТИКЕ [193]
ЗАБАВНЫЕ ЗАДАЧИ ЯКОВА ПЕРЕЛЬМАНА [20]
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ [6]
БАЗЫ ДАННЫХ [74]
САМОУЧИТЕЛЬ "СЛЕПОЙ" ПЕЧАТИ НА КОМПЬЮТЕРЕ [20]
РАБОТАЕМ В Microsoft Office [18]
АППАРАТНЫЕ СРЕДСТВА ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА [44]
ОСНОВЫ ИНФОРМАТИКИ ДЛЯ ШКОЛЬНИКОВ И СТУДЕНТОВ [77]
СОВЕТЫ ПО ОБУСТРОЙСТВУ КОМПЬЮТЕРА [72]
МАТЕМАТИКА В 6 КЛАССЕ [148]
МАТЕМАТИКА В 7 КЛАССЕ [85]
МАТЕМАТИКА В 8 КЛАССЕ [36]
МАТЕМАТИКА В 9 КЛАССЕ [153]
ЖИВОЙ УЧЕБНИК ГЕОМЕТРИИ [92]
УДИВИТЕЛЬНАЯ МАТЕМАТИКА [33]
ВЕЛИКАЯ ТЕОРЕМА ФЕРМА [45]
МАТЕМАТИКА В 11 КЛАССЕ [41]
КОНТРОЛЬНЫЕ РАБОТЫ [31]
ЗАНИМАТЕЛЬНЫЕ ЗАДАЧИ ПО ИНФОРМАТИКЕ ДЛЯ 5-6 КЛАССОВ [17]
ОБУЧАЮЩИЕ РАБОТЫ ПО ГЕОМЕТРИИ. 7 КЛАСС [19]
Статистика

Онлайн всего: 14
Гостей: 14
Пользователей: 0
Форма входа

Главная » Статьи » ЖИВОЙ УЧЕБНИК ГЕОМЕТРИИ

Подобие многоугольников
   Сравнивая между собою фигуры, мы различали до сих пор только два случая: случай равенства фигур и случай их неравенства. Но возможен и третий случай, которого мы еще не рассматривали: фигуры не равны, а п о х о ж и, так что одна представляет уменьшенное п о д о б и е другой. Например, большой и малый квадрат не равны, но имеют совершенно одинаковую форму: один представляет подобие другого (черт. 185). Два равносторонних треугольника, большой и малый, также имеют одинаковую форму (черт. 186).
   Такие фигуры, которые имеют различную величину сторон, но одинаковы по форме, называются п о д о б-н ы м и фигурами.

   В каком же случае считаем мы, что у двух фигур одинаковая форма? Рассмотрим этот вопрос для двух многоугольников. Для одинаковости формы многоугольники должны прежде всего иметь соответственно равные углы. Если углы одного многоугольника не равны углам другого, мы не назовем эти фигуры одинаковыми по форме (см. фигуры черт. 188). Значит, равенство углов одной фигуры углам другой есть необходимое условие для одинаковости их формы, т. е, для п о д о б и я этих фигур. Но д о с т а т о ч н о ли одного этого условия? Всякие ли две фигуры с соответственно равными углами имеют одинаковую форму? Взгляните на прямоугольники черт. 187. Углы прямоугольника I равны углам прямоугольника II, – однако, мы не скажем, что они одинаковой формы. Почему?

   Потому что высота первого больше высоты второго в 2 раза, а основание первого больше основания второго в 5 раз. Стороны этих фигур, как говорят, не п р о п о р ц и о н а л ь н ы: из них нельзя составить пропорции (отношение двух из них не равно отношению двух других). Форма этих четырехугольников была бы одинакова только тогда, когда из их «сходственных» сторон (т. е. из сторон, прилегающих к равным углам) можно составить пропорцию
   a/b – h/l
   Короче мы можем высказать это условие подобия многоугольников так:
   м н о г о у г о л ь н и к и п о д о б н ы, к о г д а и х с х о д с т в е н н ы е с т о р о н ы п р о п о р ц и о н а л ь н ы (т. е.
   о т н о ш е н и е д в у х и з н и х р а в н о о т н о ш е н и ю д в у х д р у г и х). Стороны многоугольников могут быть пропорциональны и не будучи сходственными, т. е. не прилегая к равным углам. Например, на черт. 188 каждая сторона квадрата I вдвое длиннее каждой стороны ромба II; значит, стороны этих фигур пропорциональны. Но все-таки эти фигуры не подобны, потому что пропорциональные стороны их не прилегают к равным углам: они не сходственные.

   Итак, для подобия, например, многоугольников ABCDE и A1B1C1D1E1 (черт. 189) необходимо:
   чтобы
   уг. A = уг. A1
   уг. B = уг. B1
   уг. C = уг. C1
   уг. D = уг. D1
   уг. E = уг. E1
   и, во-вторых, чтобы

   (А1– читается «А прим», или «А со знаком»).
Категория: ЖИВОЙ УЧЕБНИК ГЕОМЕТРИИ | Добавил: admin (21.08.2014)
Просмотров: 533 | Теги: геометрия для школьников, подготовка к гиа геометрия, геометрия от А до Я, дидактический материал по геометрии, живой учебник геометрии Перельмана | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru