С основными свойствами всякого
треугольника мы познакомились в §§ 15–22. Самые главные из них
следующие: сумма углов треугольника равна 180°; треугольники равны друг
другу или по трем сторонам, или по двум сторонам и углу между ними, или
по одной стороне и двум углам (для краткости мы обозначили эти случаи
так: ССС, СУС, УСУ). Теперь познакомимся с некоторыми новыми свойствами треугольников.
Предварительные упражнения
Укажите равные треугольники в фигуре черт. 134, где АВ = АС, a AD– равноделящая угла А.
Каковы углы ADB и ADС на черт. 134: острые или тупые?
Мы знаем, что в р а в н ы х треугольниках против равных сторон лежат равные углы. Покажем, что и
в о д н о м и т о м ж е т р е у г о л ь н и к е п р о т и в р а в н ы х с т о р о н л е ж а т р а в н ы е у г л ы.
Пусть у нас взят треугольник ABC (черт. 135), в котором сторона АВ равна стороне АС. Легко убедиться, что в таком треугольнике углы В и С, лежащие против равных сторон, равны между собой. Если в нашем треугольнике проведем (черт. 136) равноделящую АD угла А, она разобьет ABCна два треугольника: АDB и АDС, которые равны между собой (СУС). По этому угол В, лежащий против AD, равен углу С, лежащему против той же общей стороны.
Треугольник с двумя равными сторонами
называетс я р а в н о б е д р е н н ы м; его равнее стороны называются б
о к о в ы м и с т о р о н а м и этого треугольника, а третья сторона –
его о с н о в а н и е м.
Поэтому рассмотренное сейчас свойство треугольника можно высказать короче так:
в р а в н о б е д р е н н о м т р е у г о л ь н и к е у гл ы п р и о с н о в а н и и р а в н ы.
Можно удостовериться и в обратном
соотношении: если в треугольнике имеются равные углы, то стороны,
лежащие против этих углов, – равны; или-короче сказать:
в т р е у г о л ь н и к е п р о т и в р а в н ы х у г л о в л е ж а т р а в н ы е с т о р о н ы.
Чтобы убедиться в этом, возьмем треугольник (черт. 135), в котором два угла равны: уг. B = уг. C. Проведем (черт. 136) равноделящую AD; в образовавшихся двух треугольниках ADB и ADCсторона AD – общая, уг. BAD = уг. CAD, уг. В = уг. C; следовательно, треугольники равны (УСУ), и потому АВ = АС.
Применения
52. Огород имеет форму равнобедренного
треугольника, одна сторона которого на 40 м длиннее другой. Обвод
огорода 200 м. Какова длина каждой стороны? Сколько решений имеет эта
задача?
Р е ш е н и е. Если оcнование этого треуголь ника больше боковых сторон, то, обозначив его через х, имеем уравнение
х + х – 40 + х – 40 = 200,
из которого находим: х =280/3 = 93 1/3 м.
Значит, в таком случае стороны треугольника имеют длину: 93 1/3 м, 531/3 м и 531/3 м.
Если же основание к о р о ч е боковых сторон, то составляем уравнение
y + y + 40 + y + 40 = 200,
из которого y = 40 м. Следовательно, второе решение задачи 40 м, 80 м и 80 м.
53. Кровля, в зависимости от материала,
из которого она сделана, должна составлять с горизонтальной линией
следующие углы (черт. 137):
Железная и цинковая. . . 30°
Толевая. . . . . . . . . . 18°
Черепичная. . . . . . . . 40°
Тесовая. . . . . . . . . . 45°
Соломенная. . . . . . . . 60°
Зная это, определите, какой угол должны составлять между собой стропильные ноги двускатной крыши в каждом случае.
Р е ш е н и е. Для железной кровли
искомый угол равен 180° – 2 ? 300 = 120°; для толевой 180° – 2 ? 18° =
144°; для черепичной 180° – 2 ? 40° = 100°; для тесовой 180° – 2 ? 45° =
90°; для соломенной 180° – 2 ? 60° = 60°. |