Рассмотрим задачу:
На плоскости AB(черт. 234), наклоненной под углом 35°, лежит тело весом 20 кг. С какою силою нужно тянуть тело вдоль плоскости AB, чтобы удержать его от скольжения вниз (трения в расчет не принимать)?
Р е ш е н и е. Очевидно, нужно тянуть с
силою, не меньшею той, с какою тело увлекается своим весом. В механике
установлено правило, что тело, лежащее на наклонной плоскости,
увлекается вдоль нее с силою, составляющей такую долю веса тела, какую
высота ВС наклонной плоскости составляет от ее длины AB. Это отношение зависит только от величины угла A, но не зависит от того, в какой точке наклонной плоскости (черт. 235) мы станем мерить ее высоту и длину: отношение ВС : AB= отношению DE: AD= отношению MN: AMи
т. п. (почему?). Это отношение противолежащего катета к гипотенузе в
треугольнике, отсекаемом от острого угла перпендикуляром к одной из его
сторон, называется с и н у с о м этого угла и обозначается знаком sin:
SinA=BC/AB
Каждый угол имеет определенный синус,
величина которого всегда может быть вычислена (по способу, излагаемому в
подробных учебниках математики) или, менее точно, найдена из чертежа.
Если станем изменять величину угла от 0° до 90° и следить, как изменяется при этом величина синуса, то заметим следующее.
Когда угол близок к 0°, то и синус его близок к нулю: Sin 0° = 0. С увеличением угла sinего
возрастает, но никогда не превышает 1-цы (почему?). При 90° величина
его равна 1, потому что при этом катете сливается с гипотенузой;
следовательно, sin 90° = 1.
Синус некоторых углов вычисляется очень просто. Например, синус 30° (черт. 230) равен
Вычисление sin 60° проделайте сами.
Отношение п р и л е ж а щ е г о к а т е т а к гипотенузе называется к о с и н у с о м угла А и обозначается cos. Напр. (черт. 229 и 230) cos 60° = BC: AC= 0,5; cos 45° = sin 45° = 0,71.
Между синусом и косинусом острого угла и его дополнительного существует та же зависимость, что и между tg и cot g: с и н у с о с т р о г о у г л а р а в е н к о с и н у с у д о п о л н и т е л ь н о г о у г л а (выведите это правило).
Поэтому таблицу синусов и косинусов можно свести в одну, как и сделано в таблице, напечатанной в конце книги. |