Чтобы успешно применять на практике
понятия тангенса и котангенса, необходимо уметь отыскивать в таблице
тангенсы и котангенсы различных углов, а также и наоборот – подыскивать
угол, если известен его тангенс или котангенс.
Пусть требуется найти в таблице tg24°. Против числа 24 левой колонки находим в графе «tg» (вверху) число 0,45; это и есть tg24° (на графы sin и cos пока не будем обращать внимания).
Так же просто отыскивать в таблице
тангенсы всех углов от 1 с до 45°. Тангенсы углов от 45° до 89° находят
несколько иначе. Например, tg57° ищем в графе «tg», направляясь снизу, и находим его против числа 57° правой колонки: 1,54 (в то же время 1,54 – это cotg33°, потому что 33 = 90° – 57°).
Сходным образом находим котангенсы и других углов, выражающихся целым числом градусов.
Чтобы найти tg угла, не
выражающегося целым числом градусов, надо произвести маленькое
дополнительное вычисление. Найдем, например, tg38°40’. Отыскиваем tg38° и
tg39°.
tg38° = 0,78, tg39° = 0,81
Разница в 1° или 60’, обусловила, мы
видим, увеличение тангенса на 0,03. Для небольшой разницы в углах можно
считать. что разность тангенсов (и котангенсов) пропорциональна разности
углов, т. е., что
Откуда:
tg38°40? – 0,78 = 0,03 ?2/3= 0,02
tg38°40? = 0,78 – 0,03 = 0,80.
Итак, мы отыскали tg нужного нам угла, хотя прямо в таблице он не помещен.
Таким же образом находим:
tg 76°24? = 4,01 + 0,32 ?24/60 = 4,14
cotg21°14? = 2,61 – 0,13 ?14/60 = 2,58
Обратно: нахождение угла, которого tg или cotg известен в случае, когда данная величина tgили cotgимеется в таблице, – не требует пояснений. Например, угол, tg которого 0,27, есть 15°; угол, cotgкоторого 0,78, есть 52° и т. п. Если же данного tg или cotg в таблице нет, требуется дополнительное вычисление. Пусть, например, мы имеем угол, cotg которого =2, 19. Имеющийся в таблице cotg ближайшего меньшего
угла есть 2,25, отличающийся от данного на 0,06. Разность же между этим
углом и ближайшим большим, имеющимся в таблице (2,14), равна 11.
Подобно предыдущему, составляем пропорцию
И, следовательно, неизв. угол = 66°33’ (с округлением 66°30’).
Таким же образом найдем, что угол, тангенс которого 0,86, равен 40°+ 60 ?2/3= 40°40’ и т. п.
(В виду малой точности таблиц, числа минут надо округлять до целых десятков).
Применения
Рассмотрим теперь несколько задач, при
решении которых применяется таблица тангенсов и котангенсов (такие
вычисления называются т р и г о н о м е т р и ч е с к и м и).
104. Найти величину острых углов треугольника, катеты которого 16 см и 23 см.
Р е ш е н и е. Тангенс меньшего из искомых углов (черт. 231)
откуда (по таблице) искомый угол x = 34°20’.
105. Телеграфный столб 8 м высоты отбрасывает тень длиною 13,5 м. Под каким углом лучи солнца встречают землю?
Р е ш е н и е сводится, очевидно, к нахождению угла, tg которого = 8/13,5 =0,52
106. Перпендикуляр, опущенный из вершины
треугольника, имеет длину 62 см и делит противолежащую сторону на
отрезки, длина которых 38 см и 29 см. Найти углы треугольника.
Р е ш е н и е. Сначала находим (черт. 232) величину угла A, tg которого 16/29; затем величину угла C, tg которого 16/38
(как найти третий угол?).
107. Острый угол прямоугольного треугольника 48°, прилежащий катет – 83 см. Найти другой катет.
Р е ш е н и е (черт. 231). Если угол А – 48°, а АВ – 83 см, то
BC/AB = BC/83 = tgA= tg48° = 1,11,
откуда
ВС = 83 ? 1,11 = 92.
108. Найти сторону правильного 12-угольника, описанного около круга, радиус которого 80 см.
Р е ш е н и е (черт. 233). Если сторона 12-угольника АВ, то, соединив концы ее с центром О, получаем равнобедренный треугольник, угол при вершине которого 360°/12=30°.
Проведя OD перпендикулярно к AB, имеем прямоугольный треугольник AOD, в котором катет AD = ?АВ (почему?).
Далее:
AD/OD=AD/80 = tg15°=0,26
откуда:
AD= 0,26 80 = 21,
АВ = 2AD= 42.
Итак, искомая сторона 12-угольника 42 см. |