Вторник, 27.10.2020, 13:06
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 12
Гостей: 12
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ

Случайный отбор и влияние различных факторов
14.12.2015, 20:40
При разработке экспериментов для сравнения различных лекарств, катализаторов химической реакции и так далее наиболее важный момент — получить два множества данных, которые отличаются единственной переменной, изучаемой в эксперименте. При проведении подобных экспериментов в медицине могут сравниваться два лекарства или выясняться эффект от приема лекарства по сравнению с плацебо, как в случае с вакциной полиомиелита или при анализе действия аспирина по предотвращению инфарктов. Как вы уже видели, ключевой вопрос — как разделить участников исследования на две максимально похожие группы. Парадоксально, но наилучшие результаты достигаются при формировании групп случайным образом. В этом случае любые значимые различия между группами (то есть те, которые нельзя объяснить случайными событиями) объясняются различным воздействием изучаемого фактора на обе группы. Однако если помимо изучаемого фактора на группы действуют и другие факторы, то нельзя сказать, что именно является причиной различий в результатах групп.

Рассмотрим пример. Одной из классических книг по проведению экспериментов является Statistics for Experimenters Бокса, Хантера и Хантера, где объясняется, как нужно провести эксперимент, чтобы сравнить степень износа различных материалов, из которых изготавливается подошва молодежной обуви. Если в эксперименте участвует всего 10 молодых людей, их можно разделить случайным образом на две группы по 5 человек: члены одной группы получат обувь с подошвой из материала А, члены второй группы — обувь с подошвой из материала В. По прошествии определенного времени (например, полугода) нужно измерить износ подошв на всех парах обуви и провести соответствующий статистический анализ (в этом случае будет использоваться так называемый t-критерий Стьюдента для независимой выборки).

Естественно, что группы следует формировать случайным образом. Не стоит просить подростков выстроиться в шеренгу и выдавать первым пяти обувь с подошвой из материала А, последним пяти — обувь с подошвой из материала В: те, кто встал в шеренгу первыми, больше бегают и двигаются, поэтому быстрее износят обувь.

Однако этот способ сбора данных имеет один недостаток. Износ подошвы зависит не только от материала (именно это мы анализируем в ходе эксперимента), но и от самого подростка: некоторые из них больше бегают и будут даже играть в футбол в этой обуви, другие будут бегать меньше. Некоторые, возможно, почти не будут надевать выданную обувь, так как она им не понравится или они побоятся порвать ее, и подошвы не износятся.

Так как на износ подошвы влияет не только материал, из которого она изготовлена, но и другие факторы, то мы не сможем определить, какой именно фактор будет причиной возможных различий. Может случиться так, что по вине посторонних факторов различий наблюдаться не будет, но в действительности подошвы из анализируемых материалов будут изнашиваться по-разному.

Как справиться с этой проблемой? Нужно выдать каждому подростку один ботинок с подошвой из первого материала, другой — с подошвой из другого материала. В этом случае все возможные отличия в износе подошвы будут вызваны исключительно различными свойствами материалов и никаким другим фактором. В этом случае сравниваются не средние значения в обеих группах, а износ подошв обоих ботинок каждого подростка. Если одна подошва в среднем изнашивается больше другой (не имеет значения, насколько сильно они изнашиваются, важна лишь разница между ними), это вызвано различием в свойствах материалов.

Для сравнения средних значений выборок, сформированных таким образом, используется так называемый t-критерий Стьюдента для парных выборок.

Очевидно, что не следует изготавливать из материала А подошву только правых ботинок, а из материала В — подошву левых ботинок, так как, возможно, подошвы на одной ноге в среднем изнашиваются больше. Этого можно избежать, если чередовать материалы случайным образом (например, бросать монету для каждой пары обуви, и если выпадает решка, то из материала А изготавливается подошва правого ботинка).

Таким образом, ожидается, что если обувь на конкретной ноге изнашивается больше, при чередовании материалов случайным образом возможное влияние этого фактора будет устранено.

* * *

УИЛЬЯМ СИЛИ ГОССЕТ, ОН ЖЕ «СТЬЮДЕНТ»

Любой, кто хотя бы немного изучал статистику, непременно сталкивался с распределением Стьюдента, которое используется даже чаще, чем нормальное распределение, или с t-критерием Стьюдента для сравнения средних значений.

Стьюдент — это псевдоним, которым подписывал свои работы Уильям Сили Госсет (1876–1937), внесший огромный вклад в статистику. Всю свою жизнь он проработал на пивоваренном заводе Guinness в Дублине.

В начале XX века, когда Госсет окончил курсы математики и химии в Университете Оксфорда, компания Guinness перешла в руки юного наследника, который решил отойти от традиционных способов изготовления пива и воспользоваться помощью ученых в разработке новых, более совершенных способов пивоварения. Одним из тех, кто был принят на работу, был Стьюдент. Он быстро понял, как важно использовать методы статистики при сравнении различных рецептов приготовления пива. Было необходимо изучить влияние сырья, характеристики которого существенно варьировались и были подвержены воздействию факторов окружающей среды. Требовалось проводить эксперименты, но их число всегда было недостаточным, и нужно было делать выводы на основе небольшого объема доступных данных. До того времени считалось, что использованные выборки всегда были достаточно велики, чтобы по ним можно было точно оценить параметры генеральной совокупности. Однако при работе с малыми выборками оценки были неточными, и ими нельзя было руководствоваться. Госсет занялся поисками решения этой задачи и опубликовал свои выводы под псевдонимом Стьюдент, поскольку сотрудникам компании запрещалось публиковать статьи с результатами своих исследований.

Существует несколько версий того, как и почему Госсет выбрал себе такой псевдоним. По одной из версий, в компании Guinness стало известно об увлечении Госсета математикой уже после его смерти, однако другие источники указывают, что в компании знали о том, что он публикует статьи, а псевдоним Стьюдент предложил сам директор. По-видимому, целью Госсета было не сохранить в секрете разрабатываемые им теории, а скрыть от конкурентов, что Guinness использует статистические методы для улучшения качества продукции.



* * *

Выбор материала случайным образом не ведет к дополнительным затратам и позволяет исключить влияние прочих известных и даже неизвестных факторов. Похожим примером является анализ износа различных видов покрытия, которое наносится на стекла очков. Если одной группе людей раздать очки с одним покрытием, другой — с другим покрытием и по прошествии некоторого времени измерить его износ, то на степень износа очевидно повлияет не только материал, но и то, как люди ухаживали за очками, факторы окружающей среды и другие причины.

Следовательно, как и при анализе материала для подошв, наилучшим вариантом будет раздать всем очки, в которых на одно стекло будет нанесено одно покрытие, на второе стекло — другое покрытие (разумеется, это невозможно, если цвета покрытия отличаются). Стоит ли выбирать покрытие случайным образом или же можно всегда использовать покрытие А для правых стекол, покрытие В — для левых?

Ученые, проводившие подобные эксперименты, говорят, что мы всегда начинаем протирать очки с одного и того же стекла. Тот, кто сначала чистит правое стекло, всегда чистит первым именно его, а то стекло, которое протирается первым, как правило, будет чище. Поэтому всегда лучше производить выбор случайным образом.

Категория: АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ | Добавил: admin | Теги: математический сайт, популярная математика, сайт для математиков, Мир Математики, занимательная математика, дидактический материал по математик
Просмотров: 439 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru