Понедельник, 26.10.2020, 21:16
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 5
Гостей: 5
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ

У случайности есть имя
15.12.2015, 00:55

29 апреля 2004 года некий читатель обратился в редакцию популярной газеты с вопросом: «Я использовал Excel, чтобы сгенерировать случайные числа с помощью функции «=СЛЧИС ()», но эти числа всегда очень маленькие и почти равны нулю. Мне нужна система, чтобы сгенерировать шесть чисел, не превышающих 49, для простой лотереи». По-видимому, читатель думал, что если число является случайным, то оно не подчиняется никаким правилам. Это не совсем так. Существует несколько видов случайных величин. Они делятся на непрерывные, например вес, длина, плотность и так далее, и дискретные (принимающие одно из множества отдельных значений), например число неисправных деталей в партии, количество автомобилей, приезжающих на заправку ежеминутно, и другие. В действительности существует целый «каталог» различных видов распределения вероятностей. Всякий раз, когда мы имеем дело со случайной величиной, следует определить, не подчиняется ли она какому-то конкретному закону распределения вероятностей. В большинстве случаев это действительно так, и нам не потребуется выводить формулы для расчета вероятностей, среднего значения и других интересных параметров: это уже сделали до нас.

Сначала может показаться, что отличить случайные величины от неслучайных непросто, подобно тому как человеку, не знакомому с музыкой, сложно разобраться в разных музыкальных направлениях. Однако несколько практических примеров помогут вам научиться с легкостью их распознавать. Далее мы расскажем о некоторых свойствах и примерах использования трех наиболее известных законов распределения вероятностей.

То, что нам уже знакомо: биномиальное распределение С помощью общих правил вычисления вероятностей мы смогли установить вероятность выпадения 3 решек и 2 орлов (в произвольном порядке) при 5 бросках монеты с помощью следующего выражения:


В целом число успешных исходов при выполнении n опытов (вероятность успешного исхода неизменна и равна р) — это случайная величина, которая подчиняется очень известному закону распределения вероятностей. Это распределение называется биномиальным. Если мы сталкиваемся с этим распределением, нам не нужно выводить новые формулы для вычисления вероятностей.

* * *

ОДНА ОЧЕНЬ ПОЛЕЗНАЯ ФОРМУЛА

Если мы отойдем от конкретных чисел и попытаемся вычислить вероятность выпадения х решек при n бросках, где р — вероятность выпадения решки, (1 — р) — вероятность выпадения орла, мы получим следующую формулу:

Интересно, что ее можно использовать не только для решения задач о броске монеты, но и для любых задач, которые подчиняются нижеприведенной схеме:



* * *

Рассмотрим три задачи.

1. При производстве на конвейере выпускается 1 % бракованных деталей. Если детали упаковываются в коробки по 50 деталей, какова вероятность того, что в одной коробке окажутся сразу две бракованные детали?

2. Баскетболист забивает 75 % штрафных бросков. Какова вероятность того, что он попадет 8 раз из 10?

3. В семье четверо детей. Какова вероятность того, что ровно двое из них — мальчики?

Что общего у этих задач? Все они следуют описанному нами сценарию, следовательно, их очень легко решить.



Расчеты можно произвести с помощью электронных таблиц. В Excel ответ можно найти, используя следующую функцию:



Последняя переменная, которая следует за вероятностью успеха, указывает, хотим ли мы вычислить только вероятность для указанного числа успешных событий (например, ровно 2 бракованные детали; в этом случае эта переменная равна 0) или же накопленную вероятность (число бракованных деталей равно 2 и менее, в таком случае этой переменной нужно присвоить значение 1).



В задаче про игрока в баскетбол мы предполагаем, что вероятность попадания со штрафного броска постоянна, то есть не зависит от давления зрителей, нервов или хода игры (одно из преимуществ хорошего игрока — сохранять процент попаданий неизменным вне зависимости от этих условий). Многие думают, что в задаче о сыновьях и дочерях наиболее вероятно, что в семье два мальчика и две девочки, однако вероятность этого исхода равна всего 38 %. Наиболее вероятным (62 %) является любое другое сочетание.

От числа погибших от удара копытом лошади в прусской армии к числу забитых мячей в чемпионате Испании по футболу: распределение Пуассона Если переменная подчиняется биномиальному закону распределения, можно подсчитать, сколько раз она примет определенное значение (число качественных и число бракованных деталей). Эта переменная также будет иметь предельное значение: число качественных деталей не может превышать общего числа деталей в партии.

Иногда мы сталкиваемся с переменными, которые обозначают число событий, произошедших в единицу времени или на единицу площади. Такие переменные не имеют верхней границы, по крайней мере с теоретической точки зрения. К классическим примерам подобных переменных относится число посещений интернет-страницы в день, число поломок лифта в год, число звонков на АТС в час и, разумеется, число писем, ежедневно приходящих вам по электронной почте. К примерам событий, происходящих в пространстве, можно отнести следующие: число точек, пораженных ржавчиной, на метр проволоки, число дефектов на квадратный метр (или 10 квадратных метров) ткани, число изюминок в ложке с хлопьями, которые вы едите на завтрак.

В 1837 году французский математик Симеон Пуассон решил найти способ изменить формулу биномиального распределения так, чтобы ее можно было применить к подобным ситуациям. Он открыл любопытное выражение, в котором для расчета вероятности любого числа событий достаточно знать лишь среднее число событий (λ). Формула вычисления вероятности того, что некое событие произойдет х раз, выглядит так:




Французский математик XIX века Симеон Пуассон.


Так, если лифт ломается в среднем два раза в год (λ = 2), вероятность того, что в течение года он не сломается ни разу, такова:


Если на интернет-страницу в среднем заходит 100 посетителей в день (будем считать, что число посетителей неизменно в любой день недели, хотя очевидно, что будет существовать определенная разница между рабочими и выходными днями), то вероятность того, что в конкретный день страницу посетит менее 80 человек, такова:


Выполнять расчеты по этой формуле не очень удобно, но нам опять помогут электронные таблицы:



В 1898 году русский экономист и статистик Владислав Борткевич опубликовал книгу, в которой доказал, что распределение Пуассона можно использовать для объяснения статистической закономерности, наблюдаемой при редких событиях. Он использовал данные о самоубийствах и несчастных случаях со смертельным исходом, но самым известным примером его работ является анализ числа солдат, умерших от удара копытом лошади в 14 корпусах прусской армии за 20 лет (с 1875 по 1894 год).



Владислав Борткевич, русский статистик, открывший новые способы применения распределения Пуассона.


В следующей таблице фактическая частота соответствует числу армейских корпусов, умноженному на число лет (14·20 = 280). Среднее число умерших за год в пересчете на один корпус равно (91 + 2·32 + 3·11 + 4·2)/280. Используя это значение в вышеприведенной формуле, получим теоретические значения частоты, приведенные в таблице.



Если мы хотим найти более современный пример, то можно рассмотреть число голов, забитых командой во время футбольного матча. Эта переменная прекрасно соответствует требованиям распределения Пуассона: события происходят в течение четко обозначенного периода времени (футбольного матча), предельного числа событий не существует, а число незабитых голов подсчитать нельзя. Так, на диаграмме слева представлено число голов, забитых каждой командой в каждом из 380 матчей испанского чемпионата 2008–2009 годов. На диаграмме справа представлены данные, вычисленные по нашей формуле.



Фактическое и теоретическое (вычисленное по модели Пуассона) распределение числа мячей, забитых каждой командой в 380 матчах сезона 2008–2009 чемпионата Испании по футболу.


Диаграммы очень похожи. Модель Пуассона хорошо объясняет изменение числа мячей, забитых командой в течение матча.


Колокол Гаусса, или нормальное распределение

Колокол Гаусса встречается в математике очень часто. Его форма соответствует форме гистограммы, на которой представлено большое множество значений, подчиняющихся так называемому нормальному распределению. Например, мешки с сахаром весом 1 кг весят не ровно 1000,000… г — некоторые весят немного больше, другие — немного меньше. Подобное колебание веса неизбежно. Оно вызвано множеством незначительных факторов, по отдельности незаметных, но в сумме имеющих ощутимый эффект. На диаграмме ниже показано, что большинство значений находятся вблизи центрального значения, и по мере удаления от него соответствующие значения встречаются все реже и реже. Это классический колокол Гаусса, или диаграмма нормального распределения.



Возможное распределение фактического веса мешков с сахаром весом 1 кг. Диаграмма имеет форму колокола Гаусса.


Математическое выражение, описывающее форму этого колокола, впервые получил французский математик Абрахам де Муавр в 1733 году. Однако эта диаграмма носит имя немецкого математика Карла Фридриха Гаусса, который использовал ее в 1809 году в своей теории ошибок измерения, в частности ошибок, возникающих при астрономических наблюдениях. Гаусс показал, что вне зависимости от расстояния до измеряемого объекта и от его размеров при повторении измерений в одних и тех же условиях полученные значения будут распределяться особым образом.

Однако нормальное распределение занимает в статистике особое место не только потому, что оно используется в теории ошибок, но и потому, что оно очень часто встречается в природе.



Портрет Гаусса на банкноте в 10 немецких марок. В центре изображена диаграмма нормального распределения.


Говоря об истоках современной статистики, следует упомянуть имя бельгийского ученого Адольфа Кетле (1796–1874), который в XIX веке провел множество исследований, стремясь обнаружить статистические закономерности, которым подчиняется число преступлений, количество новорожденных, умерших и так далее. В поиске данных, подчиняющихся нормальному распределению, его ждал неожиданный сюрприз: в шотландском журнале были опубликованы данные о росте и охвате грудной клетки более чем 5000 солдат из различных шотландских полков. Эти данные подчинялись тому же закону, что и ошибки астрономических наблюдений.



Адольф Кетле, один из крупнейших статистиков XIX века.


По словам самого Кетле, «если неподготовленный человек измерил бы одного солдата 5738 раз, то результаты не распределились бы столь равномерно… как результаты 5738 измерений шотландских солдат. Если бы нам представили два ряда чисел, не снабдив их какими-либо комментариями, мы бы могли с уверенностью определить, какой ряд чисел соответствует результатам измерений 5738 разных солдат, а какой получен в результате неумелых измерений единственного солдата».

* * *

ЗАКОН ЭПОНИМОВ СТИГЛЕРА

Многие законы, теоремы, заболевания, научные открытия и постоянные носят имена их первооткрывателей. Так, известны болезнь Альцгеймера, постоянная Эйлера, великая теорема Ферма, комета Галлея и колокол Гаусса. Название события или закона по имени человека называется эпонимом.

Стивен Стиглер, преподаватель статистики Чикагского университета и известный историк статистики, открыл закон, который вкратце звучит так: «Ни одно открытие не носит имя того, кто в действительности его совершил». Если говорить об упомянутых нами примерах, то болезнь Альцгеймера, названная в честь Алоиса Альцгеймера, была описана до него минимум пятью учеными.

Постоянная Эйлера была открыта Якобом Бернулли, великая теорема Ферма в действительности не теорема, а гипотеза Ферма, а доказал ее Эндрю Уайлс в 1995 году. Комета Галлея была известна астрономам еще до Рождества Христова, хотя именно Эдмунд Галлей вычислил ее орбиту и предсказал дату ее возвращения. Если говорить о статистике, то нормальное распределение и диаграмма в форме колокола были открыты и подробно описаны не Гауссом, а французским математиком Абрахамом де Муавром, который опубликовал свои труды по этой теме в 1733 году, почти на 80 лет раньше Гаусса.

Это не означает, что одним ученым незаслуженно достаются лавры других. Некоторые совершают важный вклад в науку или объясняют уже открытое, но не очень известное явление, и по этой причине имена этих ученых остаются в истории. Профессор Стиглер опубликовал статью, посвященную этой теме, но он был не первым: до него об этом писали многие другие ученые, в частности Роберт Мертон, которого нередко цитирует Стиглер. Получается, что закон Стиглера подчиняется сам себе.



Портрет Абрахама де Муавра, который открыл так называемый колокол Гаусса за много лет до этого знаменитого немецкого математика.

* * *



«Живая» гистограмма. Каждый человек стоит в колонне, соответствующей его росту.

(источник: Эдвард Тафти. Наглядное отображение количественной информации. Цитируется работа Brian L. Joiner «Living Histograms», опубликованная в 1975 году в журнале International Statistical Review.)


Есть и еще одна причина, по которой нормальное распределение играет столь значительную роль. Очень часто в статистических исследованиях основное внимание уделяется средним значениям: анализируется средняя урожайность в зависимости от использованного удобрения, среднее значение выборки сравнивается с предполагаемым средним значением генеральной совокупности и так далее. Средние значения варьируются в зависимости от того, каким образом была взята выборка. Их вариацию на практике можно описать с помощью закона нормального распределения, даже если исходные данные генеральной совокупности не подчиняются этому закону. Например, число очков, выпадающее при броске игральной кости, совершенно не подчиняется закону нормального распределения. Это дискретное распределение с шестью возможными значениями: 1, 2, 3, 4, 5 и 6. Вероятность выпадения каждого из них одинакова. Если мы бросаем два кубика и анализируем среднее число выпавших очков, то частота выпадения различных средних значений уже не будет одинаковой.

Наиболее вероятно, что среднее значение будет равно 3,5. Если мы бросаем четыре кубика, то столбиковая диаграмма, представляющая вероятность возможного среднего числа выпавших очков, будет напоминать колокол Гаусса. Если мы будем бросать 10 кубиков, что равносильно взятию выборки величиной 10, то на диаграмме будет очевидно вырисовываться колокол Гаусса. Таким образом, распределение средних значений подчиняется нормальному закону.



Распределение средних значений стремится к нормальному, хотя исходные значения не подчиняются нормальному закону.


Тем не менее хотя этот закон распределения встречается очень часто, название «нормальный» — не самое удачное: можно подумать, что остальные чем-то необычны. Однако это название используется повсеместно, при этом некоторые предпочитают назвать его гауссовым распределением.

Если исходные данные по своей природе подчиняются нормальному закону (это также можно проверить графически или с помощью тестов), то их распределение полностью описывается всего двумя величинами: средним арифметическим, которое определяет центр колокола Гаусса, и среднеквадратическим отклонением, которое определяет форму колокола.



Среднее значение и среднеквадратическое отклонение — две величины, характеризующие нормальное распределение.


Если вес мешков с сахаром подчиняется нормальному закону, среднее значение равно 1000 г, среднеквадратическое отклонение — 5 г, то можно рассчитать, сколько мешков будут иметь вес свыше 1010 г, сколько — от 995 до 1010 г или менее 995 г. До недавнего времени для этого требовалось выполнять расчеты и сверяться со специальными таблицами (которые до сих пор включаются в некоторые учебники по статистике), но сегодня все расчеты можно выполнить автоматически с помощью электронных таблиц Excel. Например, вероятность того, что мешок сахара весит меньше 995 г, равна



Заметим, что приблизительно 16 % мешков имеют вес менее 995 г, но о весе конкретного мешка ничего определенного сказать нельзя. По этой же причине можно говорить об ожидаемой продолжительности жизни населения, но не о конкретной дате смерти отдельного человека.

Также существуют правила, основанные на том, что вне зависимости от среднего значения (μ, читается «мю») и среднеквадратического отклонения (σ, читается «сигма») 68 % значений будут лежать в интервале μ ± σ, 95 % — в интервале μ ± 2σ, 99,7 % — в интервале μ ± 3σ. Так, в прошлом примере среднее значение μ = 1000, среднеквадратическое отклонение σ = 5. В интервале 995—1005 будет лежать 68 % результатов. Следовательно, в этот интервал не попадает 32 % значений, по 16 % с каждой стороны. Это означает, что 16 % мешков будут иметь вес меньше 995 г.



Это правило также можно использовать для интерпретации среднеквадратического отклонения. Если мы рассмотрим распределение роста людей, среднее значение может равняться 170 см. В этом случае среднеквадратическое отклонение должно лежать в интервале 6–7 см, так как 1 или 2 % населения гарантированно имеют рост выше 190 см. Следовательно, это значение превышает среднее на три среднеквадратических отклонения.


Другие виды распределения. Рассуждения о «теоретических» моделях

Существуют и другие законы распределения вероятностей. Например, если случайная величина является непрерывной и все ее значения равновероятны, распределение называется равномерным. Когда мы используем функцию «=СЛЧИС ()» в Excel для генерации случайных чисел, результаты подчиняются именно этому закону. Существует много других законов распределения. На следующей иллюстрации показаны законы распределения, включенные в пакет статистических программ Minitab.



Распределения вероятностей, для которых можно вычислить вероятности напрямую с помощью пакета статистических программ Minitab.


Однако не следует путать модель с реальностью. Например, сфера очень часто встречается во Вселенной, но не существует объектов идеально сферической формы. Зачем же тогда нужны формулы вычисления площади поверхности или объема сферы? Они позволяют получить достаточно точные значения для применения на практике. Это же справедливо и для законов распределения вероятностей.

Один из самых часто используемых примеров нормального распределения — распределение роста людей. Однако если мы возьмем точные данные о росте миллиона взрослых жителей нашей планеты, то увидим, что они не подчиняются нормальному распределению с абсолютной точностью. Этого не произойдет и в том случае, если мы разделим людей на группы в зависимости от пола, расы и других характеристик.

Нормальное распределение — это качественная модель, которая позволяет с достаточной степенью точности оценить рост людей. Тем не менее это всего лишь модель, которая не полностью соответствует реальности. Это же справедливо и для других законов распределения вероятностей, так как на практике гипотезы не выполняются с абсолютной точностью. Все эти законы описывают лишь теоретические модели (определение «теоретическая» для модели является излишним), которые тем не менее крайне полезны.

Категория: АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ | Добавил: admin | Теги: сайт для математиков, математический сайт, Мир Математики, занимательная математика, дидактический материал по математик, популярная математика
Просмотров: 618 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru