Четверг, 24.09.2020, 07:30
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ

Первые механические вычислительные машины
19.01.2016, 13:06

Появление арабских цифр ознаменовало прогресс в вычислениях и новый виток эволюции науки. В XVII веке в ходе длительного процесса значительно изменились представления о Вселенной, а также метод и сама концепция западной науки. Этот период, который часто именуется революцией в науке, открыл путь к эпохе Просвещения, начавшейся в XVIII веке. Развитие человеческой мысли происходило очень быстрыми темпами. Появлялись новые методы исчисления, которые требовали новых, более мощных, сложных и точных инструментов. Расчеты, выполняемые вручную, неизбежно становятся источником ошибок. Чтобы избежать этого, ученые стремились свести к минимуму участие человека в расчетах, что стимулировало создание механических вычислительных машин. В период, охватывающий XVII, XVIII и XIX века, были сконструированы первые механические вычислительные машины.


XVII век

В 1617 году шотландский математик Джон Непер создал одну из первых вычислительных машин — абак, известный под названием «палочки Непера». Эта машина была столь эффективной, что в некоторых регионах она использовалась вплоть до начала XX века.

* * *

ДЖОН НЕПЕР (1550–1617)

Математик Джон Непер создал теорию логарифмов, которые он называл искусственными числами. В его честь были названы неперовы (натуральные) логарифмы. Он очень интересовался богословием: применив математические методы для толкования «Откровений» святого Иоанна Богослова, он вычислил, что конец света наступит в период с 1688 по 1700 год.


* * *

Палочки Непера представляют собой не что иное, как разновидность таблицы умножения. Это десять деревянных палочек квадратного сечения, пронумерованных от 0 до 9. На них отмечены девять промежутков, на которых записаны девять чисел, кратных данному. Разряды двузначных чисел разделены наклонной чертой, как показано на рисунке.



Современная реконструкция палочек Непера.


Чтобы продемонстрировать пример использования этого устройства, рассмотрим умножение числа 35672. Мы выбрали это число, чтобы показать применение всех строк таблицы. Нужно последовательно расположить палочки, соответствующие пяти цифрам этого числа, то есть сначала — палочку под номером 3, затем под номером 5, далее — 6, 7 и 2. Простое наблюдение за положением палочек позволяет увидеть, что в каждом ряду будут записаны результаты умножения 35 672 на все числа от 1 до 9.

Следовательно, чтобы умножить 35 672 на 4, нужно взять числа из четвертого ряда:

1/2 2/0 2/4 2/8 0/8.

Далее нужно сложить соседние числа пар, разделенные наклонной чертой:

1/2 + 2/0 + 2/4 + 2/8 + 0/8.

Получим:

1/4/2/6/8/8.

Таким образом, результат умножения 35672 на 4 равен 142688. Вы можете проверить его правильность вручную или на калькуляторе.

35 672·4 = 142 688.



Умножение 35 672 на 4 с помощью палочек Непера.


Умножение многозначных чисел выполняется аналогично современному способу: каждая цифра второго числа последовательно умножается на первое число, после чего полученные результаты складываются. Промежуточные результаты умножения получаются по уже описанной нами схеме. Следует отметить, что все необходимые промежуточные результаты находятся в одной и той же таблице. Например, чтобы умножить 35 672 на 436, нужно выполнить расчеты по описанной нами схеме в рядах 4, 3 и 6. Мы получим несколько чисел, которые нужно записать друг под другом так, чтобы диагональные линии оказались расположены в ряд.


При таком расположении чисел умножение 35 672 на 436 сводится к сложению промежуточных результатов, как показано ниже. Сначала записаны промежуточные результаты умножения, затем суммы пар чисел, разделенных диагональными чертами и, наконец, результат, полученный переносом значений в старший разряд там, где это необходимо.


Выполните эти действия на калькуляторе и убедитесь, что результат абсолютно верен:

35 672·436 = 15 552 992.

Заметьте, что числа в строках соответствуют промежуточным результатам, получаемым при известном нам способе умножения столбиком. Эти промежуточные результаты равны:


Однако палочки Непера использовались не только для умножения. Для деления одного большого числа на другое достаточно расположить палочки на столбцах, соответствующих цифрам делителя. В строках таблицы будут записаны числа, кратные делителю, которые помогут быстрее получить результат деления.

Джон Непер также является автором еще одного важного открытия — логарифмов. Этот шотландский математик обнаружил, что с их помощью можно свести сложные математические операции к более простым. Умножение сводилось к сложению, деление — к вычитанию, возведение в степень — к умножению, извлечение корней — к делению. Это чрезвычайно упростило выполнение сложных расчетов вручную и дало мощный толчок развитию математики.

log(a·b) = log (а) + log(b)

log(a/b) = log(a) — log(b)

log(ab) = b·log(a).

Следовательно, для вычисления произведения а·Ь достаточно вычислить e log(a) + log(b)

На основе логарифмов была создана логарифмическая линейка — еще одно важнейшее вычислительное устройство. Ее автором был британский математик Уильям Отред (1574–1660), который впервые стал обозначать умножение знаком X, функции синуса и косинуса — sin и cos соответственно. Этот математик использовал устройство, разработанное Эдмундом Гантером, в котором применялась одна логарифмическая шкала (в логарифмической линейке используются две шкалы). Позднее, в 1859 году, француз Амадей Манхейм представил ряд улучшений, и логарифмическая линейка обрела современный вид.



Портрет Уильяма Отреда, который считается изобретателем логарифмической линейки.


Логарифмические линейки не использовались для сложения и вычитания. Они были более удобны для умножения и деления и применялись преимущественно для выполнения именно этих операций. Более поздние версии позволяли вычислять значения корней, тригонометрических функций, степеней и логарифмов. Однако следует заметить, что точность логарифмической линейки была ограниченной: как правило, использовались три значащие цифры. Однако с помощью более точных линеек, имевших больший размер, достигалась более высокая точность. Требовалось обращать внимание на порядки величин, так как при использовании логарифмической линейки они не учитывались. Логарифмические линейки применялись в качестве средства научных расчетов до 1970-х годов, пока их не вытеснили карманные электронные калькуляторы.



Модель логарифмической линейки 1960-х годов. Этим вычислительным устройствам вскоре пришли на смену калькуляторы.


Первые калькуляторы

Первый электронный карманный калькулятор появился в 1972 году. Это была знаменитая модель Hewlett-Packard НР-35. Пока что мы рассказывали об эволюции исчисления и средствах его автоматизации, то есть о развитии теоретической базы, на основе которой в итоге был создан карманный калькулятор и впоследствии множество других устройств, без которых мы не можем сегодня представить нашу жизнь.

Однако эта теория принесла первые плоды не в XX веке, а намного раньше. Первый калькулятор в истории был создан еще в XVII веке. Его изобретение стало логичным продолжением развития механических вычислительных устройств, о которых мы только что рассказали. Это устройство, получившее название «часы для счета», создал Вильгельм Шиккард (1592–1635) в Тюбингене в 1623 году.



Немецкая марка с изображением «часов для счета» Вильгельма Шиккарда.


С помощью первого в мире калькулятора можно было выполнять четыре основных арифметических действия. Сложение и вычитание выполнялись полностью механически, в отличие от умножения и деления: в этом случае оператору приходилось выполнять промежуточные действия самому. Детали машины напоминали палочки Непера, перенос значений в старший разряд осуществлялся механически при помощи зубчатых колес: когда колесо, соответствовавшее единицам, совершало полный оборот, колесо, обозначавшее десятки, сдвигалось на одно деление. Подобные механизмы использовались в Европе как минимум с XVI века при создании шагомеров, служивших для измерения пройденного пути. Древнейший из известных нам шагомеров был создан французом Жаном Фернелем в 1525 году.

Калькулятор Шиккарда не оказал большого влияния на вычисления: его изобретатель стал жертвой одной из эпидемий, бушевавших в Европе в те годы. Изобретение затерялось и было вновь найдено лишь в XX веке. О нем стало известно из переписки Шиккарда с Иоганном Кеплером, с которым тот сотрудничал. В своих письмах он приводит многочисленные эскизы своего изобретения. Благодаря им стало возможным воссоздать машину и убедиться, что она действительно работала. В одном из писем Кеплер подтверждает, что попросил экземпляр калькулятора у своего друга и коллеги Шиккарда.

«Паскалина», калькулятор, изобретенный Блезом Паскалем, стал первой широко известной вычислительной машиной. Этот гениальный философ и математик представил свое изобретение публике в 1642 году, когда ему было всего 19 лет. Созданная Паскалем машина была схожа с изобретением Вильгельма Шиккарда: когда колесо, соответствовавшее меньшему разряду, совершало полный оборот, колесо, соответствовавшее следующему разряду, поворачивалось на одно деление. К сожалению, подобное устройство было источником различных проблем, поскольку зубчатые колеса не всегда сцеплялись правильно.



«Паскалина», изобретенная Блезом Паскалем.


Было доказано, что Паскаль создал свою машину независимо от Вильгельма Шиккарда. «Паскалина» была проще, и с ее помощью можно было выполнять только сложение и вычитание. Первая версия работала с пятизначными числами (машина Шиккарда с шестизначными), в последующих версиях число разрядов было увеличено. Некоторые калькуляторы поступили в продажу, но их высокая цена отпугнула покупателей и не принесла семье Паскаля существенной прибыли. «Паскалина» стала всего лишь игрушкой, символом статуса для зажиточных людей Франции и других стран Европы. Паскаль в течение 10 лет улучшал свое изобретение и создал 50 различных версий.

Несмотря на ограничения и сбои в работе, эти машины имели огромное значение. С их появлением всю Европу охватила жажда изобретательства, математики и инженеры один за другим принялись создавать новые и новые механические калькуляторы. Некоторые из них были более совершенными, чем «Паскалина», другие были еще проще. Англичанин Сэмюэль Морленд (1625–1695), например, создал вычислительную машину, адаптированную к британской денежной системе с пенни, шиллингами и фунтами, которая отличалась от десятичной. В отличие от «Паскалины», его калькулятор не мог переносить значения в старший разряд автоматически. В нем присутствовали отдельные колеса для значении, перенесенных в каждый разряд, которые требовалось учитывать вручную. Машина Морленда была примечательна своими размерами: она свободно помещалась в карман.

* * *

БЛЕЗ ПАСКАЛЬ (1623–1662)

Французский математик, физик, философ и богослов Блез Паскаль вместе с Чарльзом Бэббиджем считается отцом современных компьютеров. Паскаль был вундеркиндом: уже в И лет он написал небольшой трактат о звуках вибрирующих тел и самостоятельно доказал, что сумма углов треугольника равна сумме двух прямых углов. В 12 лет он изучил труды Евклида и начал посещать собрания, на которых присутствовали лучшие математики и другие ученые Европы: Роберваль, Дезарг, сам Декарт. Паскаль создал свои фундаментальные труды по проективной геометрии, когда ему было всего 16 лет. Прочитав рукопись, Декарт не мог поверить, что ее автор — подросток. Паскаль был математиком и физиком первой величины, а его открытия ярко сияют на звездном небе современной науки.



* * *



В книге The Description and Use of two Arithmetick Instruments, изданной в Лондоне в 1673 году, описывается вычислительная машина, изобретенная Сэмюэлем Морлендом.


Калькулятор, созданный Готфридом Лейбницем, был намного более совершенным по сравнению с машиной Паскаля, так как с его помощью можно было автоматически выполнять умножение. До этого умножение с помощью калькуляторов было трудоемким и требовало выполнения промежуточных вычислений вручную. Однако вновь возникала извечная проблема: машины становились все сложнее и сложнее и в итоге переставали работать вовсе. Точность деталей была недостаточной, чтобы обеспечить требуемую надежность. Но несмотря на это, усовершенствования, представленные Лейбницем, оказали большое влияние на последующие изобретения. Среди них выделяются два нововведения: зубчатый механизм Лейбница (цилиндр, удерживавший зубчатые колеса на определенных расстояниях друг от друга) и передвижная каретка. Улучшения, необходимые для того, чтобы эти изобретения стали по-настоящему надежными, внес француз Шарль Ксавье Тома де Кольмар в 1822 году, когда изобрел и начал серийный выпуск арифмометра.

Однако вклад Лейбница не ограничивался одним лишь созданием неточного вычислительного калькулятора. Намного более важным был его труд о двоичной системе счисления, лежащей в основе современной информатики. Эту систему счисления до него изучал англичанин Томас Хэрриот (1560–1621), однако результаты его работы не были опубликованы. В следующей таблице приведена запись чисел от 0 до 15 в двоичной системе.




Устройство арифмометра Шарля Ксавье Тома де Кольмара (вверху) и калькулятора, изобретенного Гэтфридом Лейбницем.


Лейбниц внес важный вклад не только в развитие систем счисления. Этот немецкий философ также является автором значимых трудов по логике. Его работы в этой области были опубликованы посмертно, так как, по всей видимости, Лейбниц был не вполне доволен ими. Заглавие одной из его работ, Post tot logicas nondum Logica qualem desidero scripta est, можно перевести как «После стольких логик та логика, что я сочинил, еще не была написана». Он работал над созданием логического исчисления, которое можно было бы применять к любым научным высказываниям.

В одной из своих работ Лейбниц писал:

«Если нам это удастся, то, когда возникнет противоречие, необходимости в споре между двумя философами будет не более чем между двумя математиками. Будет достаточно взять перья и абак и сказать друг другу: произведем вычисления».

* * *

ГОТФРИД ВИЛЬГЕЛЬМ ЛЕЙБНИЦ (1646–1716)

Немецкий мыслитель Готфрид Вильгельм Лейбниц вместе с Декартом и Спинозой входит в тройку великих рационалистов XVII века. Он был математиком, логиком, философом, геологом, историком и экспертом в юриспруденции. Он также внес огромный вклад в технологию и предвосхитил появление многих понятий в биологии, медицине, психологии и даже информатике. Независимо от Ньютона он создал анализ бесконечно малых. Введенные им обозначения используются и сейчас.

Составить полный перечень его открытий невозможно, поскольку до сих пор не издано полное собрание всех его сочинений, разбросанных по дневникам, письмам и рукописям, некоторые из которых никогда не публиковались. Лейбниц установил соответствие между двоичной системой счисления и сотворением мира: в его математическом представлении космоса, напоминавшем пифагорейское, ноль обозначал пустоту, единица — Бога.


* * *

В этой работе прослеживается влияние Раймунда Луллия: при написании «Рассуждения о комбинаторном искусстве» (Dissertatio de Arte Combinatoria) Лейбниц вдохновлялся его «Великим искусством». Для Лейбница даже приближение к божественному знанию должно было достигаться исключительно путем комбинирования основных понятий. Эти основные понятия, которым невозможно дать определение, должны были выражаться на языке математики. На их основе с помощью четких дедуктивных правил должны были выводиться различные истинные высказывания.

Лейбниц считал, что между логикой, математикой и метафизикой существует тесная взаимосвязь. Он был убежден, что его метафизика полностью математическая и что истинную метафизику сложно отличить от истинной логики.


Новые выражения для вычисления числа π

В течение XVII века различные исследователи предпринимали попытки вычислить значение π с помощью бесконечных рядов, следуя путем, который наметил Франсуа Виет. Одним из них был англичанин Джон Валлис (1616–1703) из Оксфордского университета. В своей книге «Арифметика бесконечного», опубликованной в 1633 году, Валлис описал различные выражения для вычисления интегралов и, взяв их за основу, получил следующее выражение для числа π:


Математик и философ Уильям Броункер (1620–1684), основатель и первый президент Лондонского королевского общества, путем преобразования этого выражения в 1658 году получил следующую формулу:


Следующее выражение, известное в Европе, было открыто за ее пределами. Речь идет о формуле Мадхавы из Сангамаграма. Лейбниц повторно открыл ее в 1671 году, использовав разложение в ряд для функции арктангенса, полученное Джеймсом Грегори. Она выглядит так:

π/4 = 1–1/3 + 1/5 — 1/7 + … + (-1)n/(2+ 1) + …

и выводится из следующего разложения в ряд для арктангенса:

arctgх — (x3)/3 + (х5)/5 — (х7)/7 + …

Категория: АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 1066 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru