Среда, 15.01.2025, 16:41
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Главная » Файлы » МИР МАТЕМАТИКИ » БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ

Эпсилон
27.05.2015, 23:33

Когда говорят об эпсилонах или о языке эпсилон-дельта, речь идет вовсе не о секретных кодах Министерства обороны, а о сложном математическом аппарате, который напрямую связан с понятием предела. Первое определение понятию предела сформулировал Бернард Больцано (1781–1848), не получивший, к сожалению, при жизни должного признания. Первым, кто использовал это понятие на практике, был Огюстен Луи Коши (1789–1857), однако окончательное строгое определение предела дал Карл Вейерштрасс. Определение предела на языке эпсилон-дельта является чрезвычайно точным в той части, которая касается делимости на бесконечное множество частей. Хотя это определение очень сложно понять тому, кто не владеет некоторыми математическими знаниями, оно тем не менее долгое время использовалось в учебниках для средней школы. Мы не хотим сказать, что старшеклассники недостаточно умны, чтобы понять его, но не стоит ожидать, что все поймут его с одинаковой легкостью. Во многих учебниках оно приводится мелким шрифтом, и преподаватели обходят его молчанием.

Том 18. Открытие без границ. Бесконечность в математике - _63.jpg

Карл Вейерштрасс на литографии 1895 года. Этот немецкий математик был первым, кто использовал на практике язык эпсилон-дельта.

* * *

СПОРЫ ГЕНИЕВ

Переписка, несомненно, является древнейшей формой общения между учеными. С ее помощью формулируется и решается множество задач. По сравнению с другими формами общения письма обладают преимуществом — конфиденциальностью: они адресуются конкретному человеку или группе людей. В виде переписки проходили многие научные дискуссии.

Одной из самых известных стало жаркое противостояние между Ньютоном и Лейбницем об авторстве математического анализа. Абсолютно независимо друг от друга они получили аналогичные результаты, однако Ньютон опубликовал свои работы первым, что дало ему основания обвинить Лейбница в плагиате. Это привело к ожесточенному и абсурдному спору, не имевшему аналогов в истории науки.

* * *

Попробуем сделать понятие предела более ясным, несколько упростив его.

По сути оно имеет много общего с понятием накопления. Представим, что перед входом в помещение образовалась очередь. Можно заметить, что люди постепенно становятся ближе ко входу и друг к другу. Это совершенно естественно: изначально, когда в очереди немного людей, они стараются сохранять комфортное расстояние между собой, но по мере того как число людей растет, расстояние между ними уменьшается. Интересно, что мы говорим о двух разных расстояниях, которые, однако, тесно связаны между собой: о расстоянии между началом очереди и входом и о расстоянии между людьми в очереди, которое по мере того как мы приближаемся к концу, увеличивается. Это логично, так как те, кто становится в очередь, стараются сохранять комфортное расстояние между собой, но по мере того как очередь движется вперед, люди чувствуют давление тех, кто находится позади. Можно сказать, что люди скапливаются у входа.

Можно определить степень скопления людей с помощью параметра, который будет описывать, например, изменение расстояния между людьми в очереди по мере приближения к ее началу. Как правило, этот параметр будет постепенно уменьшаться.

Том 18. Открытие без границ. Бесконечность в математике - _64.jpg

В очереди, например у входа в кинотеатр, люди собираются у дверей, где расстояние между ними будет минимальным. По мере отдаления от входа расстояние между людьми увеличивается.

Степень скопления людей можно определить, выбрав в качестве единицы измерения конкретное расстояние, например 50 см. Если в 50 см от входа находятся люди, это будет соответствовать определенной степени скопления. В зависимости от величины этой единицы измерения число людей будет изменяться. Аналогично можно измерить степень скопления людей, оценив расстояние между ними.

Здесь возникает первый интересный вопрос: когда мы видим скопление людей, логично предположить, что они собрались по какой-то причине, то есть это скопление возникает вокруг определенного места, где происходит что-то важное. Когда мы видим на дороге скопление муравьев, то сразу же понимаем, что где-то поблизости находится еда или вход в муравейник. Еще один пример — скопление машин на автомагистрали, которое служит признаком того, что поблизости находится пункт оплаты проезда или произошла авария. Эти примеры помогут нам понять одно из самых интересных открытий в истории математики. Оно касается существования определенных чисел, которые в течение веков скрывались в мире бесконечно малых.

В предыдущих примерах речь шла о дискретных множествах. Рассмотрим непрерывные величины, так как они допускают возможность бесконечного деления.

Оставим скопления людей и автомашин и рассмотрим возможные множества точек на прямой. Допустим, что дана последовательность точек а1, a2, а3аn…, которые обладают одним свойством: соседние члены последовательности располагаются все ближе и ближе друг к другу. Очевидно, что они скапливаются вокруг некоторой точки — обозначим ее Р. Допустим, что выбранной нами основной мерой длины является отрезок длиной d. Если мы поместим один конец этого отрезка в точку Р, то увидим, что некоторые точки последовательности окажутся внутри этого отрезка длиной d.

Том 18. Открытие без границ. Бесконечность в математике - _65.jpg

Более того, мы сможем найти точку аn, после которой все точки будут располагаться внутри отрезка d. Если мы уменьшим длину отрезка и сделаем ее равной d' d, то все точки, начиная с более удаленной, аm, будут располагаться внутри этого нового отрезка. Именно такое значение имеет эпсилон в математическом анализе.

Мы можем гарантировать, что для любой величины d всегда найдется такое n, начиная с которого все элементы последовательности будут находиться внутри отрезка d. В этом случае говорят, что последовательность сходится в точке Р. Это означает следующее: во-первых, эта последовательность бесконечна, во-вторых, расстояние между точкой Р и произвольным членом последовательности может быть сколь угодно малым.

Когда мы работаем с дискретными множествами, все изложенное выше практически неприменимо. Рассмотрим последовательность чисел 100, 50, 25, 12, 6, 3, 1 (можно представить эту последовательность как очередь из семи чисел у входа, которым, например, является ноль). Очевидно, что разница между произвольным членом последовательности и нулем постепенно уменьшается, равно как и разница между двумя соседними членами последовательности. Например, между 100 и 50 находится 49 чисел, между 6 и 3 — всего два. Тем не менее нельзя сказать, что члены последовательности скапливаются в окрестности точки 0. Очевидно, что если мы возьмем отрезок длиной 1/2 и поместим один из его концов в точку 0, на этом отрезке не будет находиться ни один член последовательности. А если мы рассмотрим последовательность

Том 18. Открытие без границ. Бесконечность в математике - _66.jpg

то вблизи нуля всегда будет находиться какой-либо ее член, сколь бы малым ни было расстояние до нуля.

На языке математики эти расстояния называются окрестностями. Окрестность подобна скобкам, в которые заключена точка Р. Основная идея заключается в том, что сколь малыми ни были бы эти скобки (то есть радиус окрестности), в них всегда будут находиться элементы последовательности. В языке эпсилон-дельта основную роль играет соотношение между двумя числами: шириной скобок (радиусом окрестности, который обычно обозначают ε — эпсилон) и числом n, определяющим элемент аn, начиная с которого все элементы последовательности будут располагаться внутри заданной окрестности. На языке математики это звучит так: «Для любого эпсилон существует n, такое что…»

Именно так определяется понятие бесконечного деления, очень близкое к понятию предела. Когда в одном из парадоксов Зенона интервал делится пополам бесконечное число раз, мы формируем последовательность, подобную описанной в предыдущем примере. Теперь мы можем воспользоваться строгим определением перехода к пределу и подтвердить, что последним членом последовательности будет 0. Это не помогает разрешить парадокс, так как ситуация, по сути, не изменилась: точки образуют бесконечную последовательность и скапливаются вблизи нуля, и мы считаем, что существует последняя точка последовательности, 0, но в действительности 0 не является членом этой последовательности. Это утверждение не является оправданным, но четко определено на языке математики. Как говорил Бертран Рассел, «математика может быть определена как доктрина, в которой мы никогда не знаем ни о чем говорим, ни того, верно ли то, что мы говорим».

В действительности Коши в своем определении предела использовал не точки, которые скапливаются вокруг некоторой данной точки, а точки, которые скапливаются рядом друг с другом. Иными словами, скопление точек, которое рассматривал Коши, подобно скоплениям автомобилей на разных участках дороги, вызванным множеством аварий в разных местах. Ситуация значительно осложняется тем, что если мы рассматриваем исключительно рациональные числа, то прямая, на которой они располагаются, не будет заполнена — на ней останутся промежутки. Например: дана последовательность точек (теперь мы связываем точки на прямой с рациональными числами), которые скапливаются все плотнее и плотнее. Эту ситуацию можно четко определить на языке математики, что сделал Коши. Однако проблема заключается в том, что эти точки могут скапливаться вокруг пустого места на прямой, точнее вокруг точки, которой не соответствует никакое рациональное число.

Так происходит, например, в случае с последовательностью

Том 18. Открытие без границ. Бесконечность в математике - _67.jpg

о которой мы говорили в главе 2 и которая сходится к числу √2, а оно не является рациональным. Разумеется, мы можем построить прямоугольный треугольник, гипотенуза которого будет равна √2, но так мы определим это число геометрически, а во времена Коши математики пытались дать определение числам чисто арифметическими или аналитическими методами. Рациональные числа, по сути, вообще не были определены как числа, пока Дедекинд и, позднее, Кантор не сформулировали для них точной дефиниции. Последний сделал не только это, но и устранил промежутки на числовой прямой, которых в действительности существует бесконечное множество, так как иррациональных чисел, равно как и рациональных, бесконечно много.

Однако Кантор заслуживает отдельной главы, ведь он не только заполнил числовую прямую, устранив эти промежутки, но и первый встретился с бесконечностью лицом к лицу.

Категория: БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ | Добавил: admin | Теги: Мир Математики, бесконечность в математике, занимательная математика, непрерывность, дидактический материал по математик, популярная математика
Просмотров: 4806 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 3
    Гостей: 3
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2025
    Яндекс.Метрика Top.Mail.Ru