Среда, 15.01.2025, 17:12
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Главная » Файлы » МИР МАТЕМАТИКИ » БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ

Галилей
27.05.2015, 23:48

Галилео Галилей (1564–1642) совершил революцию во многих областях науки. Мы не будем рассказывать ни о его творчестве, ни о том, какое влияние оно оказало на науку в целом, — рассмотрим вкратце его размышления о бесконечности.

Во-первых, Галилей рассматривал движение как процесс, происходящий без пауз, то есть делал выбор в пользу непрерывного, а не дискретного, зная, что занимает рискованную позицию, так как это автоматически означало принятие перехода от потенциальной к актуальной бесконечности. Для этого задачи, связанные с движением, следует рассматривать с геометрической точки зрения. Графическое изображение движения с переменной скоростью может выглядеть, например, следующим образом.

Том 18. Открытие без границ. Бесконечность в математике - _46.jpg
Том 18. Открытие без границ. Бесконечность в математике - _46.jpg_0

Портрет Галилео Галилея кисти фламандского художника Юстуса Сустерманса (1636) и график, описывающий свободное падение тел.

На горизонтальной оси откладывается время, на вертикальной — скорость.

Неравномерное движение описывается, например, уравнением v = 2t. Это означает, что с течением времени скорость возрастает: по прошествии одной секунды она равна 2, по прошествии двух секунд — 4 и т. д. Если в треугольнике АВС сторона АВ представляет пройденное время, сторона ВС — скорость, то пройденный путь будет равняться площади треугольника АВС. Галилея интересовало применение этого метода к более сложным разновидностям движения, например по параболической траектории, при этом неизбежно требовалось рассматривать кривые линии и площади фигур, ограниченных ими. В своих расчетах он использовал методы, схожие с методами Кеплера. Однако, как вы увидите чуть позже, его ученик Кавальери первым сформулировал рациональный метод для вычисления площадей подобных фигур.

Как мы уже говорили, Галилей неизбежно должен был столкнуться с парадоксами бесконечности и изучить ее природу. Именно так он пришел к парадоксу, который не смог разрешить. С формальной точки зрения эта задача даже не была парадоксом, но она содержала, как вы убедитесь чуть позже, возможное математическое определение бесконечности.

Эта задача-парадокс, которая впервые упоминается в диалогах Галилея в 1638 году, звучит так.

Рассмотрим в качестве исходного множества ряд чисел:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10….

Далее запишем ряд чисел, которые являются их квадратами:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100….

Очевидно, что оба этих множества бесконечны в том смысле, что мы можем неограниченно добавлять к ним все новые и новые числа. Кроме того, Галилей заметил, что каждому элементу первого множества соответствует один из элементов второго, но, с другой стороны, кажется очевидным, что в первом множестве больше чисел, чем во втором. Вопрос, который поставил Галилей, заключается в том, какая бесконечность больше, первая или вторая, что ведет к кажущемуся парадоксу. Он полагал, что либо в чем-то ошибался, либо сравнения, основанные на понятиях «больше», «меньше» и «равно», неприменимы, когда речь идет о бесконечности.

В этом смысле он был прав, поскольку, как три столетия спустя доказал Георг Кантор, «арифметика бесконечного отлична от арифметики конечного».

Категория: БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ | Добавил: admin | Теги: Мир Математики, бесконечность в математике, занимательная математика, непрерывность, дидактический материал по математик, популярная математика
Просмотров: 1049 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 5
    Гостей: 5
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2025
    Яндекс.Метрика Top.Mail.Ru