Суббота, 04.02.2023, 18:10
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
За партой
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
Школярик
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Главная » Файлы » МИР МАТЕМАТИКИ » БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ

Кеплер
27.05.2015, 23:50

Кеплер был одним из первых математиков Возрождения, который занялся вычислением объемов, причем не совсем в обычных обстоятельствах: впервые он обратил внимание на эту задачу в тот самый день, когда сочетался вторым браком с Сюзанной Рейтингер (его первая жена скончалась годом ранее). Это был брак по расчету, так как Кеплер искал женщину, которая позаботилась бы о нем и его детях и вела бы домашнее хозяйство. Сюзанна, должно быть, понимала, насколько необычным характером отличался ее будущий муж, поскольку она не удивилась, когда он покинул свадебное торжество, чтобы подробно изучить, как трактирщик измеряет объем вина в бочках. Бочки не имели строго цилиндрическую форму, и объем измерялся с помощью мерного стержня, который опускался в них через отверстие в крышке.

Определив таким образом уровень вина в бочке, трактирщик узнавал, сколько его осталось. Результатом размышлений Кеплера стал вышедший в 1615 году трактат под названием «Новая стереометрия винных бочек». Для решения задачи Кеплер использовал метод неделимых, разработанный Архимедом. Можно сказать, что из задачи об объеме бочки вина впоследствии родился анализ бесконечно малых. Тем не менее следует отметить, что труды Кеплера в этой области носили скорее практический, чем теоретический характер, и в этом смысле их можно считать отчасти неполными. Например, для вычисления площади круга он рассматривал сумму площадей бесконечного числа треугольников, вершины которых совпадали с центром круга, а основания располагались на окружности. Аналогично для вычисления объема сферы он рассчитывал сумму объемов конусов, вершины которых совпадали с центром сферы, а основания находились на ее поверхности. С помощью этого метода Кеплер пришел к выводу, что объем сферы равен одной трети произведения ее радиуса на площадь поверхности. Корректность всех этих операций Кеплер обосновывал принципом непрерывности, который при использовании его метода вычисления объемов следовало принять за истину.

* * *

БОЧКИ КЕПЛЕРА

Задача о бочках, рассмотренная Кеплером, принадлежит к классическим задачам, решаемым с помощью интегрального исчисления. Общим случаем этой задачи является вычисление объема жидкости, заключенной в сосуде определенной формы. Когда цистерна с бензином приезжает на автозаправку, оператор обычно опускает в нее длинный металлический стержень для измерения уровня жидкости в емкости. Очевидно, что отметки на этом стержне должны быть нанесены в зависимости от формы цистерны.

Как правило, она имеет форму цилиндра, основания которого являются полусферами или параболоидами вращения. В некоторых аэропортах можно встретить цистерны такой же формы с керосином.

Том 18. Открытие без границ. Бесконечность в математике - _45.jpg
Категория: БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ | Добавил: admin | Теги: Мир Математики, бесконечность в математике, занимательная математика, непрерывность, дидактический материал по математик, популярная математика
Просмотров: 794 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
сила знаний
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
Тетрадкин град

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 7
    Гостей: 7
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2023
    Яндекс.Метрика Top.Mail.Ru