Вторник, 12.11.2024, 03:07
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Главная » Файлы » МИР МАТЕМАТИКИ » БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ

Непрерывные преобразования
27.05.2015, 23:56
Понятие бесконечной делимости тесно связано с понятием непрерывности. Этот вопрос достаточно сложен и необычен. В прошлой главе вы увидели, что означает непрерывное как противоположность дискретному. Теперь мы попытаемся рассмотреть непрерывное с несколько иной точки зрения. Наиболее интуитивно понятное определение непрерывного звучит так: линия является непрерывной, если мы можем изобразить ее, не отрывая карандаша от бумаги. Понятие непрерывности также применимо к преобразованиям. Допустим, что дан параллелограмм, подобный изображенному на рисунке:
Том 18. Открытие без границ. Бесконечность в математике - _36.jpg
и мы хотим превратить его в квадрат с помощью непрерывного преобразования:
Том 18. Открытие без границ. Бесконечность в математике - _37.jpg
Нужно представить, что стороны фигуры изготовлены из деформируемого материала, например резины, и мы можем перейти от одной фигуры к другой, не ломая ее сторон.
В 1604 году Кеплер опубликовал небольшое сочинение «Оптическая часть астрономии» как дополнение к трактату по астрономии, где он представил необходимую теорию для изготовления оптических инструментов. Кеплер изучал конические сечения и возможные непрерывные преобразования одних сечений в другие. Напомним, что конические сечения — это плоские геометрические фигуры, получаемые сечением конуса плоскостью, как показано на следующей иллюстрации.
Том 18. Открытие без границ. Бесконечность в математике - _38.jpg
Аполлоний в своей книге «Конические сечения» определил эти фигуры как геометрические места плоскости. Его определение было абсолютно корректным, но чтобы понять его, требовались особые знания геометрии. Метод Кеплера, напротив, более понятен и обеспечивает более наглядное геометрическое представление.
Его формулировка звучит так: если мы разрежем двухсторонний конус (состоящий из двух бесконечно больших конусов, ориентированных в противоположные стороны, которые имеют общую ось и вершины которых совпадают) плоскостью, перпендикулярной оси, то получим окружность. Если мы слегка наклоним эту плоскость, то окружность превратится в эллипс, который будет увеличиваться с ростом угла наклона плоскости. Если мы продолжим наклонять плоскость, то наступит момент, когда она станет параллельна образующей конуса. В этом случае сечением будет парабола. Когда же, наконец, плоскость станет параллельна оси конуса, мы получим в сечении две ветви гиперболы. Эти кривые (эллипс, парабола и гипербола) получили название конических сечений (окружность обычно считается частным случаем эллипса). Существуют и другие способы сечения конуса плоскостью, при которых получаются так называемые вырожденные конические сечения (две прямые).
Можно представить, что плоскость, рассекающая конус, движется непрерывно, без скачков. Если бы мы могли наглядно изобразить преобразование сечения, то увидели бы, как эллипс превращается, например, в окружность или гиперболу.
Кеплер определил эти преобразования на плоскости, начав с эллипса.
Напомним, что эллипс — это коническое сечение, которое можно определить как геометрическое место точек плоскости, для которых сумма расстояний до двух данных фиксированных точек, называемых фокусами, постоянна. Допустим, что фокусами эллипса, который мы хотим преобразовать, являются точки F и F' — две точки, расположенные на большой оси эллипса. Если мы будем непрерывно сдвигать вдоль большой оси в сторону F' эксцентриситет эллипса будет уменьшаться, пока и F' не совпадут, и эллипс не превратится в окружность.
Том 18. Открытие без границ. Бесконечность в математике - _39.jpg
Если теперь мы будем сдвигать фокус F в сторону, противоположную F' эксцентриситет эллипса будет расти, а сам эллипс — сплющиваться (эксцентриситет — это величина, принимающая значения от 0 до 1, которая указывает, насколько эллипс по форме отличается от окружности). В определенный момент эллипс превратится в параболу — коническое сечение с единственным фокусом. Аполлоний определял параболу как геометрическое место точек плоскости, равноудаленных от данной точки, называемой фокусом, и данной прямой, называемой директрисой параболы.
Если длинный путь точки F не закончится на бесконечности и продолжится дальше, эта точка совершит разворот в пространстве и снова появится слева от F' — в этом случае мы получим гиперболу. Иначе говоря, чтобы перейти от эллипса к гиперболе, нужно взять эллипс за концы, как за ручки, и согнуть, как показано на рисунке:
Том 18. Открытие без границ. Бесконечность в математике - _40.jpg
Гиперболу можно получить преобразованием эллипса. Для этого можно представить, что мы взялись за точки А и В обеими руками, как за руль автомобиля, и сложили эллипс, направив руки к себе. Таким образом, точка А перейдет в А', В — в В'.
Человек, расположенный лицом к нам, увидит у нас в руках две ветви гиперболы.
Единственная проблема заключается в том, что для этого преобразования требуется выполнить поворот, пройти через бесконечность, вернуться в исходное положение и взглянуть на эллипс, как будто ничего не произошло. Как могло случиться, что Кеплер, который считал, что Вселенная конечна, и был противником всех философских и математических теорий, в которых рассматривалась актуальная бесконечность, смог не моргнув глазом описать подобное преобразование? Говоря прямо, Кеплер переходил от одной теории к другой в соответствии с практическими интересами. Разумеется, мы говорим об интересах прикладной математики.
Понятие непрерывного отображения, которое мы схематично описали, впоследствии стало фундаментальным в проективной геометрии. Основная идея заключается в следующем: допустим, что мы обнаружили некоторое геометрическое свойство эллипса. Если мы будем перемещать один из его фокусов так, как мы объяснили выше, это свойство должно сохраниться. При перемещении фокуса эллипс будет становиться более или менее вытянутым. Если преобразование является непрерывным, настанет момент, когда это же свойство будет применимо к окружности, параболе или гиперболе.
Прием непрерывного изменения позднее использовал Блез Паскаль (1623–1662) в случае правильных многоугольников: он преобразовывал, например, шестиугольник в пятиугольник, непрерывно сдвигая две вершины по направлению друг к другу, пока они не совпадут.
Как Кеплер решил проблему, возникающую при использовании этого метода при переходе к бесконечности? Он рассуждал так: прямая бесконечно продолжается с обоих концов, пока они не совпадут в одной точке. Для Кеплера Вселенная была конечной, но очень, очень, очень большой. Достаточно большой, чтобы вместить в себя все необходимое, и даже больше, но все-таки конечной.
Как бы то ни было, важно не только то, что Вселенная считалась достаточно большой, чтобы вместить в себя изгибающуюся прямую, концы которой, после того как охватят все сущее, совпадают (похожей идеи в некотором роде придерживался и Альберт Эйнштейн при формулировке понятия пространства-времени). Более важно, что Кеплер аккуратно подошел к понятию непрерывного преобразования.
Категория: БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ | Добавил: admin | Теги: Мир Математики, бесконечность в математике, занимательная математика, непрерывность, дидактический материал по математик, популярная математика
Просмотров: 995 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru