Вторник, 10.12.2024, 12:37
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Главная » Файлы » МИР МАТЕМАТИКИ » БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ

Предисловие
28.05.2015, 07:18

Французский писатель Альфонс Алле (1854–1905) говорил: «Бесконечность велика, особенно ближе к концу», тем самым не без доли юмора показав, что мы не можем воспринимать бесконечность как таковую и всегда представляем ее в сравнении с чем-либо. Иными словами, человек может рассматривать бесконечность только в привязке к чему-то конечному, так как сам имеет конечную природу. Когда мы смотрим вдаль, мы теряемся и погружаемся в философские размышления, домыслы и гипотезы и, в лучшем случае, формируем к бесконечности какое-то отношение, не всегда рационально обоснованное. Поэтому неудивительно, что бесконечность была, есть и будет темой философских, научных и религиозных споров, ведь философия, наука и религия — три огромные области человеческой мысли, границы между которыми не всегда четко определены.

Когда большинство людей думают о бесконечности, они испытывают головокружение, ведь она неизменно ускользает от нас, как бы мы ни старались. И это в самом деле так. Возможно, бесконечность именно потому вызывает такой интерес, что представляет собой неисчерпаемый источник вдохновения. История ее изучения в математике настолько любопытна, что можно говорить о «математике бесконечности» и смело утверждать, что в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.

Но любой математический объект должен быть четко определен. В этом смысле математик подобен охотнику: он исследует незнакомую местность, выслеживает добычу, выжидает, берет ее на мушку и, тщательно прицелившись, стреляет.

Это же произошло и с бесконечностью, причем она была непростой добычей — потребовалось больше трех тысяч лет, чтобы поймать ее. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ. Однако бесконечность можно было встретить и в геометрии, и в лабиринте чисел, более привычных охотникам-математикам.

Мы проследим, как размышляли о бесконечности величайшие мудрецы всех времен и народов, будь то философы, богословы, физики или математики. В погоне за бесконечностью некоторые из них утратили рассудок, другие поплатились жизнью, взойдя на костер по приговору инквизиции, и все это — из-за идеи. Однако мы знаем, что одна идея способна радикально изменить наше восприятие мира и пошатнуть основы верований.

Эта тема интересует не только математиков, но и философов, при этом и математическая, и философская точка зрения на бесконечность должны быть согласованы между собой. Ведь, как сказал французский математик Жан-Шарль де Борда (1733–1799), «без математики нельзя глубоко проникнуть в суть философии, без философии нельзя глубоко проникнуть в суть математики, а без них обеих нельзя понять суть чего бы то ни было».

Категория: БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ | Добавил: admin | Теги: популярная математика, дидактический материал по математик, непрерывность, занимательная математика, бесконечность в математике, Мир Математики
Просмотров: 982 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 4
    Гостей: 4
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru