Суббота, 21.12.2024, 17:01
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Главная » Файлы » МИР МАТЕМАТИКИ » ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА

Автоматические рассуждения
09.06.2015, 08:40

Четвертый раздел искусственного интеллекта — автоматические рассуждения.

Именно они привлекают наибольшее внимание широкой публики и часто становятся главной темой научной фантастики. Тем не менее автоматическим рассуждениям как отдельной дисциплине дала начало не слишком увлекательная задача об автоматическом доказательстве математических теорем.

Часто выдвигаются новые теоремы, которые требуется доказать или опровергнуть. Доказательство теорем может быть крайне сложным. Именно это произошло с великой теоремой Ферма (согласно ей, если n — целое число, большее двух, то несуществует ненулевых натуральных чисел, удовлетворяющих равенству zn = хnуn) — на доказательство этой теоремы ушло более 200 лет!

В 1956 году экономист Герберт Саймон (1916–2001) и инженер Аллен Ньюэлл (1927–1992) совместно разработали машину под названием Logic Theorist, способную доказывать нетривиальные теоремы математической логики. Разумеется, появление этой машины стало вехой в развитии искусственного интеллекта и вновь вызвало философскую дискуссию о возможности создания мыслящих машин. Эта дискуссия, конечно же, повлияла на литературу и кино 1960—1970-х годов, породив образы мыслящих машин, враждебных человеку. Согласно философу Памеле МакКордак, Logic Theorist доказывает: машина способна выполнять задачи, которые cчитаются творческими и подвластными исключительно человеку.

 Разум, машины и математика. Искусственный интеллект и его задачи - _10.jpg

Гэрберт Саймон (слева) и Аллен Ньюэлл за игрой в шахматы, 1958 год.

В Logic Theorist использовались так называемые символьные системы, созданные математиками, чтобы придать смысл некоторым выражениям и уйти от произвольных обозначений. К примеру, мы можем утверждать: высказывание «быть человеком» означает «быть смертным», что можно записать математически как А —> В, где символ А эквивалентен высказыванию «быть человеком», символ —> — «означает», а В равносильно высказыванию «быть смертным». «Быть человеком означает быть смертным» — это произвольное высказывание, которое записывается выражением А —> В. После формализации всех произвольных членов выполнять операции с ними намного проще с точки зрения математики и информатики.

Для упрощения математических действий символьные системы опираются на аксиомы, из которых выводятся теоремы. Преимущество символьных систем в том, что они являются формальными и однозначно определенными, поэтому программировать их сравнительно просто. Рассмотрим пример:

Сократ — человек.

Все люди смертны.

Следовательно, Сократ смертен, поскольку он — человек.

Если мы запишем эти высказывания в формальном виде, они будут выглядеть так:

А: Сократ

В: человек (люди)

А —> В

С: смертен (смертны)

В —> С

Если А —> В и В —> С, то А —> С, то есть Сократ смертен.

В этом случае правило вывода под названием «гипотетический силлогизм» позволяет заключить, что А —> С истинно, если А —> В и В —> С.

Тем не менее число вариантов, полученных при автоматическом и систематическом выводе теорем на основе аксиом и правил вывода, будет опасно близко к числу атомов во Вселенной. По этой причине в машине Logic Theorist использовались эвристические рассуждения, то есть методы нечеткого прогнозирования, которые помогали выбрать лучшие производные высказывания среди возможных. Отобранные высказывания определяли правильную последовательность выводов, позволявших прийти от аксиом к доказательству теорем.

Рассмотрим практический пример. Мы хотим знать, смертен ли Сократ. Нам известны следующие исходные аксиомы:

А: Сократ

В: болельщик «Олимпиакоса

С: грек

D: человек

Е: смертен

А —> С

С —> D

A —> D

С —> Б

D —> E

Определим, истинно или ложно А —> Е, с помощью «грубой силы», то есть путем перебора всех возможных сочетаний. Имеем:

А —> С —> D —> Е

A —> С —> В

A —> D —> E

Мы выполнили семь логических операций, взяв за основу всего пять аксиом и одно правило вывода — гипотетический силлогизм. Легко догадаться, что в сценариях, содержащих больше аксиом и правил вывода, число возможных сочетаний может оказаться столь велико, что на получение доказательств уйдут годы. Чтобы решить эту проблему так, как это сделали Саймон и Ньюэлл, используем эвристическое рассуждение (или эвристику). В нашем примере эвристика подскажет: если мы хотим доказать, что некий человек смертен, нет необходимости заводить разговор о футболе (А —> С —> В).

И символьные, и эвристические системы широко используются для решения практических задач, а не только для автоматического доказательства теорем.

Приведем еще один пример использования эвристик. На каждом ходу в шахматной партии существует в среднем 37 возможных вариантов. Следовательно, если компьютерная программа будет анализировать партию на восемь ходов вперед, на каждом ходу ей придется рассмотреть 378 возможных сценариев, то есть 3512479453921 ходов — более 3,5 млрд вариантов. Если компьютер тратит на анализ каждого варианта одну микросекунду, то при анализе партии всего на восемь ходов вперед (достаточно простая задача для профессионального шахматиста) мощный компьютер будет думать над каждым ходом больше двух с половиной лет!

Для ускорения процесса нужны какие-то улучшения, которыми и будут эвристики. Эвристики — это правила прогнозирования, позволяющие исключить из рассмотрения ходы, которые ведут к очень невыгодной позиции и поэтому нецелесообразны. Уже благодаря тому, что эвристики позволяют исключить из рассмотрения несколько абсурдных ходов, число анализируемых вариантов существенно сокращается. Таким образом, эвристики — это средства прогнозирования, основанные на интуиции программиста, которые играют столь важную роль в большинстве интеллектуальных систем, что в значительной степени определяют их качество.

* * *

МАТЕМАТИЧЕСКАЯ ЛОГИКА

Математическая логика — раздел математики, занимающийся изучением схем и принципов рассуждений. Это дисциплина, в которой на основе различных правил и методов определяется корректность аргумента. Логика широко используется в философии, математике и информатике как средство проверки корректности имеющихся утверждений и вывода новых. Математическая логика была создана на основе аристотелевой логики Джорджем Булем, автором новой алгебры, которую впоследствии назвали булевой, и Огастесом де Морганом, сформулировавшим законы логики с помощью новой, более абстрактной нотации.

В последние 50 лет математическая логика пережила бурный рост, и на ее основе возникла современная логика, которую следует отличать от классической логики, или логики первого порядка. Формально логика первого порядка рассматривает только конечные выражения и правильно построенные формулы. В ней нет места бесконечным множествам и неопределенности.

 Разум, машины и математика. Искусственный интеллект и его задачи - _11.jpg

Сколь бы сложными ни казались выражения, записанные на доске, в них очень редко используются символы, значение которых выходит за рамки логики первого порядка.

* * *

В последние годы непрерывно развиваются автоматические рассуждения, и теперь интеллектуальные системы способны рассуждать в условиях недостатка информации (неполноты), при наличии противоречивых исходных утверждений (в условиях неопределенности) или в случаях, когда при вводе новых знаний в систему объем совокупных знаний о среде необязательно возрастает (в условиях немонотонности).

Крайне мощным инструментом для работы в этих областях является нечеткая логика — разновидность математической логики, в которой высказывания необязательно абсолютно истинны или абсолютно ложны. Если в классической математической логике о любом высказывании всегда можно сказать, истинно оно или ложно (к примеру, ложным будет высказывание «некий человек не смертен», а истинным — «все люди смертны»), то в нечеткой логике рассматриваются промежуточные состояния. Так, если раньше говорили, что Крез не беден, это автоматически означало, что он богат, а если говорили, что Диоген не богат, это означало, что он беден (в этом примере классическая логика явно дискриминирует представителей среднего класса!). Применив нечеткую логику, мы можем сказать, что Аристотель богат со степенью, например, 0,6.

* * *

ДЖОРДЖ БУЛЬ (1815–1864) И ЕГО ЛОГИКА

Если Алана Тьюринга называют одним из отцов современной информатики, то Джорджа Буля можно назвать ее дедом. Этот британский философ и математик создал булеву алгебру — основу современной компьютерной арифметики, которая, в свою очередь, является фундаментом всей цифровой электроники.

Буль разработал систему правил, которые посредством математических методов позволяют выражать и упрощать логические задачи, в которых допускается только два состояния — «истина» и «ложь». Три основные математические операции булевой алгебры — это отрицание, объединение («или») и пересечение («и»). Отрицание, обозначаемое символом заключается в смене значения переменной на противоположное. К примеру, если А = «Аристотель — человек», то ¬А = «Аристотель — не человек». Объединение, обозначаемое символом v — это бинарная операция, то есть операция, в которой для получения результата требуются два аргумента. Результатом объединения будет истина, если один из двух аргументов истинный.

К примеру: «Верно ли, что сейчас вы либо читаете, либо ведете машину?». Ответом на этот вопрос будет «Да, верно», поскольку сейчас вы читаете эту книгу. Но если бы вы вели машину и не читали книгу, то ответ также был бы утвердительным. Он был бы утвердительным и в том случае, если бы вы, пренебрегая всеми соображениями безопасности, вели машину и читали эту книгу одновременно.

Третья операция — пересечение, обозначаемая символом 

 Разум, машины и математика. Искусственный интеллект и его задачи - l.jpg_3
, также является бинарной. Если мы переформулируем предыдущий вопрос и скажем «Верно ли, что сейчас вы читаете и ведете машину?», то ответом будет «Да, верно» только в том случае, если вы будете читать за рулем.

На основе трех указанных операций можно определить другие, более сложные, например исключающее «или» (

 Разум, машины и математика. Искусственный интеллект и его задачи - l1.jpg
), результат которой в нашем случае будет истинным только тогда, когда мы либо читаем книгу, либо ведем машину, но не выполняем оба эти действия одновременно. Операция 
 Разум, машины и математика. Искусственный интеллект и его задачи - l1.jpg_0
не принадлежит к основным операциям булевой алгебры, так как ее можно выразить через три основные операции А 
 Разум, машины и математика. Искусственный интеллект и его задачи - l1.jpg_1
В = (А 
 Разум, машины и математика. Искусственный интеллект и его задачи - l.jpg_4
¬ В) v (¬ А 
 Разум, машины и математика. Искусственный интеллект и его задачи - l.jpg_5
В).

В цифровой электронике «истина» и «ложь» обозначаются единицей и нулем. Этим значениям соответствует наличие электрического тока в цепи (1) либо его отсутствие (0). Логические операции выполняются с помощью сочетаний транзисторов. Именно благодаря применению транзисторов в интегральных схемах в последние 40 лет информатика развивается столь быстрыми темпами.

Микропроцессор вашего домашнего компьютера, который можно назвать его мозгом, содержит сотни миллионов транзисторов, расположенных на площади всего лишь в несколько квадратных сантиметров!

Категория: ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 1119 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 2
    Гостей: 2
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru