Воскресенье, 11.04.2021, 08:04
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА

Поиск
09.06.2015, 08:37

Как создаются новые лекарства? Еще совсем недавно фармацевты готовили медикаменты вручную, а их единственными помощниками были бумага и карандаш.

Они создавали и оптимизировали химическую структуру лекарства и в специальных лабораториях синтезировали и испытывали все новые и новые их версии, чтобы подтвердить, действительно ли возросла эффективность таблеток. Этот метод проб и ошибок отчасти объясняет, почему стоимость разработки нового лекарства в среднем составляет 1 млрд долларов.

При создании нового средства, как правило, синтезируется новая молекула, взаимодействующая с неким белком и в конечном итоге нейтрализующая его действие.

В живых организмах белки участвуют в метаболическом каскаде — последовательности реакций. Следовательно, если молекула нейтрализует действие одного из белков, участвующих в интересующей нас последовательности реакций, каскад будет нарушен, а молекула станет хорошим лекарством.

 Разум, машины и математика. Искусственный интеллект и его задачи - _12.jpg

В этом упрощенном сценарии лекарство препятствует взаимодействию белка-мишени с белком с и нарушает метаболический каскад.

Чтобы нейтрализовать один из этих белков, необходимо, чтобы молекулы лекарства соединялись с ним определенным образом. Следовательно, большая часть усилий при создании нового медикамента направлена на то, чтобы новая молекула присоединялась к активному центру нужного белка — мишени.

Чтобы определить, действительно ли молекула лекарства соединяется с молекулой белка, необходимо измерить энергию их взаимодействия. Энергия взаимодействия между молекулой-кандидатом и белком-мишенью — это энергия, которую необходимо приложить для сохранения связи в системе. К примеру, если мы хотим, чтобы магнит держался на двери холодильника, нам не нужно постоянно прикладывать какую-то силу. Достаточно мощный магнит, только поднеси его к дверце, сам по себе притянется к ней с определенной силой. В этом случае говорят: для того чтобы магнит оставался прикрепленным к дверце холодильника, требуется приложить отрицательную энергию.

Разумеется, молекула лекарства, которая не образует связи с молекулой белка-мишени, не окажет лечебного воздействия: такая молекула будет свободно перемещаться по кровеносной системе или тканям, никак не решая задачу нейтрализации белка. А хорошим лекарством будет соединение, для которого энергия взаимодействия будет отрицательной и минимально возможной, — это говорит нам о том, насколько сильно притягиваются молекулы лекарства и белка. Следовательно, основной параметр, значение которого следует оптимизировать при разработке нового лекарства, это энергия взаимодействия.

Подобные задачи, решение которых заключается в определении ряда оптимальных параметров (например, какой шахматной фигурой нужно сделать ход, чтобы выиграть партию, или какими должны быть положение и размеры балок моста, чтобы снизить стоимость строительства и повысить прочность конструкции), объединяются в категорию задач поиска. При этом часто требуется найти параметры, обеспечивающие максимальное значение некой математической функции. В этом случае поиск называется оптимизацией.

Об этом говорил еще Дарвин

Чаще других для решения задач поиска применяется метод эволюционных вычислений. При этом происходит оптимизация значений функций различной сложности, подобно тому как живые организмы эволюционируют, чтобы повысить выживаемость в окружающей среде.

Идею эволюционных вычислений предложил исследователь Джон Холланд в 1975 году в своей книге «Адаптация в естественных и искусственных системах» (Adaptation in Natural and Artificial Systems). Позднее западные ученые обнаружили, что немецкие инженеры уже использовали подобные стратегии для оптимизации формы сопл первых реактивных двигателей самолетов во время Второй мировой войны. Эволюционные вычисления охватывают широкий спектр методов и алгоритмов, целиком основанных на законах естественной эволюции, предложенных Дарвином. Согласно его законам, лучше всего к жизни в определенной среде подготовлены особи, которые демонстрируют более высокую выживаемость и, как следствие, оставляют больше потомства.

В этой аналогии с законами естественной эволюции особям соответствуют возможные решения задачи. Эволюционные алгоритмы сначала оценивают пригодность каждой «особи», а затем определяют, каким будет их «потомство» — второе поколение решений. В ходе итеративного процесса особи из последующих поколений оцениваются, отбираются и скрещиваются между собой, формируя новые поколения особей. Этот процесс заканчивается после выполнения установленных для задачи критериев останова. Таким образом, любой эволюционный алгоритм состоит из пяти основных этапов: инициализации, оценки, отбора, размножения и замещения, как показано на следующей схеме.


 Разум, машины и математика. Искусственный интеллект и его задачи - _13.jpg

 Разум, машины и математика. Искусственный интеллект и его задачи - _13.jpg

Различия между эволюционными алгоритмами определяются тем, как именно реализован каждый из этих основных этапов.

* * *

ДАРВИН И ЛАМАРК: ДВА РАЗНЫХ ВЗГЛЯДА НА ЭВОЛЮЦИЮ

Жан Батист Пьер Антуан де Моне Ламарк (1744–1829) — французский натуралист, который совершил революцию в биологии, предложив классификацию живых организмов в зависимости от их сложности, а также четко разделив органический и неорганический мир. Еще одним его вкладом в науку стало создание первой биологической теории эволюции, изложенной в книге «Философия зоологии», которая была опубликована в 1809 году, за 50 лет до того, как свою теорию эволюции предложил Дарвин.

Теория Ламарка, в отличие от дарвиновской, основывается на наследовании приобретенных признаков, то есть на способности отдельных особей передавать потомкам приобретенные на протяжении жизни полезные признаки, которые способствуют адаптации к окружающей среде. Различия между теориями эволюции Ламарка и Дарвина прекрасно демонстрирует их объяснение длинной шеи жирафа. Согласно Ламарку, жирафы, которые выше всех вытягивали шею и развивали мышцы, чтобы дотянуться до съедобных листьев на высоких ветках деревьев, передавали этот признак своему потомству, которое продолжало развивать эти мышцы, и в конце концов шеи жирафов достигли нынешних размеров. Согласно теории Дарвина, напротив, жираф, родившийся с самой длинной шеей или с более мощными мышцами, передаст эти признаки потомству независимо оттого, какие усилия он предпринимал при жизни.

Хотя гипотезы Ламарка были отвергнуты в пользу теории Дарвина, не так давно их правильность была подтверждена для некоторых частных случаев. К примеру, известно, что мать, организм которой после пережитой болезни выработал особые антитела, может передать их детям, которые получат иммунитет к этой болезни. Таким образом, здесь мы имеем дело с наследованием признаков, приобретенных при жизни в результате адаптации к окружающей среде.

 Разум, машины и математика. Искусственный интеллект и его задачи - _14.jpg

Карикатура на Ламарка, изображенного в виде жирафа.

Категория: ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 397 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ

ИНФОРМАТИКА В ШКОЛЕ

ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru