Суббота, 26.09.2020, 22:39
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » КАРТОГРАФИЯ И МАТЕМАТИКА

Цилиндрические и псевдоцилиндрические проекции
19.01.2016, 21:18
Равновеликая цилиндрическая проекция Ламберта — это геометрическая цилиндрическая проекция, определяемая как геометрическая проекция земной сферы на касающийся ее цилиндр (как правило, точки касания лежат на экваторе) с последующим развертыванием цилиндра на плоскости (для этого цилиндр разрезается вдоль одного из меридианов, то есть вертикально). В картах, созданных с использованием этой проекции, искажения возникают на первом этапе построения, так как развертывание цилиндра на плоскость является изометрическим преобразованием и не искажает размеры. Если изменить диаметр основания цилиндра, то есть уменьшить его так, чтобы он рассекал сферу, или же сменить его положение либо проекцию лучей, то мы получим различные геометрические цилиндрические проекции.

Другими проекциями этого же типа являются центральная цилиндрическая проекция и стереографическая проекция Брауна. В центральной цилиндрической проекции «лучи света» распространяются из центра сферы на ее поверхность и на поверхность цилиндра. Искажения у полюсов, вносимые этой проекцией, очень велики и даже больше, чем искажения в проекции Меркатора. В стереографической проекции Брауна, разработанной в 1867 году, центром проекции для произвольной точки меридиана служит противолежащая точка экватора на этом же меридиане.

Эта проекция, как и в свое время стереографическая проекция Галла, была создана в попытках устранить излишние искажения у полюсов, возникающие при использовании проекции Меркатора.



Сечения для некоторых геометрических цилиндрических проекций, показывающие разницу размеров и внешнего вида карт, созданных с использованием этих проекций.


Мы считаем, что цилиндр касается сферы на экваторе, но также можем рассмотреть случаи, когда цилиндр рассекает сферу вдоль двух параллелей, симметричных относительно экватора. Так, если цилиндр рассекает сферу вдоль параллелей 30° с. ш. и ю. ш., то равновеликая цилиндрическая проекция Ламберта станет эквивалентна проекции Бермана (1910) или проекции Галла — Петерса (1833 и 1967), если цилиндр рассекает сферу вдоль параллелей 45° с. ш. и ю. ш. Если в стереографической проекции Брауна цилиндр рассекает сферу вдоль 45-х параллелей, имеем стереографическую проекцию Галла (1885).



Карта, выполненная в равновеликой цилиндрической проекции Бермана, при которой цилиндр рассекает сферу вдоль 30-х параллелей.


Понятие цилиндрической проекции охватывает не только геометрические, но и алгоритмические проекции, которые обладают некоторыми общими свойствами с описанным выше геометрическими проекциями.

1. Линии координатной сетки, то есть меридианы и параллели, являются прямыми и перпендикулярны друг другу.

2. Масштаб вдоль каждой параллели постоянен (для разных параллелей он отличается), следовательно, меридианы равноудалены друг от друга. Длины всех меридианов и всех параллелей одинаковы.

Карты мира, созданные с помощью этих проекций, прямоугольные, а их метрические свойства симметричны относительно экватора. В качестве примеров можно привести цилиндрическую равнопромежуточную проекцию, цилиндрическую проекцию Миллера и проекцию Меркатора. В простой цилиндрической равнопромежуточной проекции, которую ввел Эратосфен, масштаб карты неизменен вдоль каждого меридиана, следовательно, параллели равноудалены друг от друга. Частным случаем является plate саrréе — проекция, в которой меридианы и параллели образуют

квадратную сетку (расстояния между ними одинаковы). Математическая формулировка этой проекции проще, так как всего лишь представляет на плоскости широту φ и долготу θ. Цилиндрическая проекция Миллера была создана в 1942 году в попытках сохранить внешний вид проекции Меркатора и уменьшить искажения у полюсов, однако она не является ни равновеликой, ни конформной, то есть не сохраняет ни площади, ни углы. О проекции Меркатора мы подробно расскажем в главе 9.

На рисунке вы можете видеть, как распределяются параллели в Северном полушарии при использовании разных цилиндрических проекций с одинаковым масштабом у экватора, и оценить вносимые искажения.



Сравнение расположения параллелей в некоторых цилиндрических проекциях.


Кроме того, можно рассмотреть разновидности картографических проекций (прямые, поперечные и косые), которые отличаются расположением плоскости, цилиндра или конуса проекции относительно земной сферы. В этих проекциях сетка меридианов и параллелей выглядит по-разному. Прямые цилиндрические проекции (геометрические и алгоритмические) — это проекции, в которых цилиндр касается сферы на экваторе или рассекает ее вдоль двух параллелей — этот случай мы рассмотрели выше. В поперечных цилиндрических проекциях цилиндр касается меридиана или рассекает сферу вдоль окружностей, параллельных меридиану. В косой проекции точки касания расположены на большом круге, который не является ни меридианом, ни экватором, либо линии пересечения цилиндра и сферы являются окружностями, параллельными большому кругу сферы. Поперечные и косые цилиндрические проекции удобно использовать, когда необходимо заострить внимание на какой-либо области, расположенной вдоль меридиана, так как искажение вблизи линий касания цилиндра и сферы меньше.



На схемах вверху представлены различные цилиндрические проекции. На рисунке снизу изображена равновеликая цилиндрическая поперечная проекция Ламберта с касательным меридианом 90° западной долготы, пересекающим Северную Америку с севера на юг.


Прямые цилиндрические проекции сильно искажают формы и очень часто искажают площади участков вблизи полюсов. Прямоугольные карты мира, составленные с помощью этих проекций, рисуют нам неверную картину мира.

В псевдоцилиндрических проекциях предпринята попытка решить эти проблемы путем сближения параллелей по мере приближения к полюсам. Прямые псевдоцилиндрические проекции, в которых линия касания сферы и цилиндра проходит по экватору, обладают следующими свойствами.

1. Параллели изображаются горизонтальными прямыми, необязательно равноудаленными друг от друга.

2. Меридианы изображаются произвольными кривыми, отстоящими друг от друга на одинаковое расстояние вдоль каждой параллели.

Следовательно, как и в цилиндрических проекциях, масштаб псевдоцилиндрических проекций вдоль параллелей постоянен. Но так как меридианы и параллели пересекаются не под прямым углом, ни одна из таких проекций не может быть конформной. В атласах часто используются две равновеликие проекции: проекция Моллвейде (в 1805 году в этой проекции была выполнена эллиптическая карта мира, на которой меридианы имеют форму эллипсов) и синусоидальная проекция Сансона — Флемстида (возможно, первым ее использовал Меркатор), в которой меридианы изображаются синусоидальными кривыми. В псевдоцилиндрических проекциях также были составлены карта Колиньона (1865; в вариантах этой карты, имеющих форму треугольника и ромба, меридианы изображены наклонными прямыми. Эти карты сохраняют площади, но очень сильно искажают формы), шесть карт Эккерта (1906; карты с четными номерами являются равновеликими, в картах с нечетными номерами параллели равноудалены друг от друга, в первой паре карт меридианы изображены прямыми, во второй паре — окружностями, в третьей паре — эллипсами) и карта в проекции Робинсона (1974; эта проекция используется при составлении карт мира Национальным географическим обществом вместо проекции Меркатора).



Карта мира, выполненная в синусоидальной проекции, или проекции Сансона Флемстида. Эта проекция также известна как равновеликая проекция Меркатора, так как Меркатор использовал ее в некоторых своих картах.

Категория: КАРТОГРАФИЯ И МАТЕМАТИКА | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 927 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru