Пятница, 26.04.2024, 00:56
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Главная » Файлы » МИР МАТЕМАТИКИ » КАРТОГРАФИЯ И МАТЕМАТИКА

Определение и картографические свойства
19.01.2016, 17:26

Рассмотрим сферу и касательную ей плоскость. Отображением точки А на поверхности сферы, полученным с помощью центральной проекции, будет точка А' на плоскости, определяемая как пересечение прямой, проходящей через точку А и центр сферы, с этой плоскостью.



Схема центральной, или гномонической, проекции и карта, выполненная в этой проекции (центр проекции расположен на экваторе).


Это очевидно геометрическая проекция. Если мы вновь представим Землю как шар из полупрозрачного пластика, на поверхности которого нарисованы континенты, то сможем увидеть его гномоническую проекцию, если поставим шар на белый стол и разместим в центре шара точечный источник света.

Если точкой касания шара и плоскости является один из полюсов, то меридианы отображаются в виде радиальных равномерно распределенных прямых, исходящих из центра карты, где будет изображен полюс. Экватор в этом случае бесконечно удален, и его нельзя представить на карте. На такой бесконечной карте нельзя изобразить и полушарие целиком. Другие параллели будут иметь вид концентрических окружностей, центр которых совпадает с полюсом.



Карта, выполненная в полярной гномонической проекции. Центром проекции является Северный полюс.


Если точка касания шара и плоскости располагается на экваторе, то меридианы будут отображаться в виде параллельных прямых, распределенных неравномерно. Экватор в этой проекции будет выглядеть как прямая, перпендикулярная меридианам, а остальные параллели примут форму гипербол.

Если точкой касания шара и плоскости выбрать любую произвольную точку сферы, то меридианы будут изображаться в виде радиальных неравномерно распределенных прямых, указывающих на полюс. Экватор будет изображен в виде прямой, перпендикулярной только меридиану, проходящему через точку касания. Другие параллели, близкие к полюсу, примут форму эллипсов, параллель, проходящая через точку касания, будет изображена в виде параболы, остальные параллели — в виде гипербол.



Карта, выполненная в косой гномонической проекции с центром в Японии.


Вот некоторые свойства карты в гномонической проекции.

1. Как правило, круглая форма (возможно, обрезанная тем или иным способом), карта охватывает лишь часть одного из полушарий.

2. Большие круги, проходящие через точку касания, отображаются как радиальные равномерно распределенные прямые (если мы рассмотрим несколько больших кругов, отстоящих друг от друга на равные углы), а точки, удаленные от точки касания на одинаковое расстояние, примут форму окружностей с центром в этой точке.

3. Форма и распределение меридианов и параллелей будут выглядеть так, как мы описали выше. Искажение в направлении меридианов будет равно μ = 1/sin2 φ, в направлении параллелей — λ = 1/sin φ.

4. Гномоническая проекция сохраняет геодезические линии, но не сохраняет расстояния, площади и величины углов.

5. Искажение площадей, форм и углов, наименьшее в точке касания (в центре карты), будет увеличиваться по мере удаления от этой точки.

Доказать геометрическими методами, что гномоническая проекция сохраняет геодезические линии, очень просто. Геодезические линии сферы, большие круги, получаются сечением сферы плоскостью, проходящей через центр сферы. Следовательно, изображением большого круга в центральной проекции будет прямая, вдоль которой пересекаются плоскость, определяющая большой круг, и касательная плоскость, как показано на рисунке. Это доказывает, что гномоническая проекция преобразует геодезические линии сферы (ее большие круги) в геодезические линии плоскости (прямые).



Гномоническая проекция сохраняет геодезические линии и преобразует большие круги сферы в прямые на плоскости.


Кроме того, можно доказать, что это по сути единственная картографическая проекция, обладающая подобным свойством. Если говорить о сохранении площадей или углов, то этим свойством обладает множество проекций.

Чтобы определить, сохраняет ли гномоническая проекция площади и (или) углы, вычислим искажения, возникающие при ее использовании на меридианах и параллелях. Для этого построим индикатрису Тиссо для произвольной точки сферы, то есть рассмотрим окружность достаточно малого размера (в действительности она будет бесконечно малой, поэтому можно считать, что окружность располагается на плоскости, касающейся сферы в этой точке) и рассчитаем размеры эллипса, в который преобразуется эта окружность в гномонической проекции.

Представим Землю как сферу единичного радиуса. Рассмотрим плоскость проекции Т, которая касается сферы (допустим, точка касания расположена в Северном полушарии). На эту плоскость мы спроецируем часть полусферы, при этом центр проекции будет совпадать с центром сферы. Пусть А — точка сферы с широтой φ, D — диск достаточно малого радиуса r, который касается сферы в точке А.

Построим проекцию этого диска на плоскость проекции Т в два этапа. На первом этапе диск D преобразуется в диск D', который лежит в плоскости, параллельной D. Центром этого диска является точка А' — отображение точки А, полученное с помощью гномонической проекции. В силу подобия треугольников (по теореме Фалеса), как вы можете видеть на следующем рисунке, радиус r' диска D' удовлетворяет соотношению


По правилам элементарной тригонометрии

sinφ = 1/|OA'|

Имеем:


Первый этап построения гномонической проекции.


Искомым отображением будет проекция диска D' на касательную плоскость Т — уже не диск, а эллипс. В направлении «запад — восток» диск D' пересекает плоскость Т, следовательно, проекция не изменит его размеров, и длина соответствующей полуоси эллипса будет равна уже вычисленному радиусу:

r' = r/sinφ

Итак, искажение вдоль параллели будет равно:

λ = 1/sinφ

Посмотрим, как изменится диск в направлении «север — юг», и рассчитаем искажение вдоль меридиана. Так как радиус r' очень мал по сравнению с расстоянием между А' и центром проекции О, угол А'ВС (см. след, рисунок) будет очень близок к прямому углу. Так как r достаточно мал, этот угол можно считать прямым. Как следствие, проекцией отрезка длиной r', лежащего в направлении «север — юг», будет отрезок на плоскости Т длиной r":

r" = r'/sinφ = r/sin2φ

согласно правилам элементарной тригонометрии. Искажение вдоль меридиана будет равно:


Второй этап построения гномонической проекции.


Как следствие, отображением D" окружности радиуса r в центральной проекции будет эллипс, а длины его полуосей равны:

r' = r/sinφ и r" = r/sin2φ

Можно сделать вывод: центральная проекция не сохраняет площади, поскольку, как мы уже отмечали, искажение вдоль меридианов

μ = 1/sin2φ

должно быть обратным искажению вдоль параллелей

λ = 1/sinφ

Это соотношение не выполняется:


Гномоническая проекция также не сохраняет углы, поскольку искажение вдоль меридианов и параллелей отличается.

Категория: КАРТОГРАФИЯ И МАТЕМАТИКА | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 849 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru