Понедельник, 18.01.2021, 09:38
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 9
Гостей: 9
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ

Намеки на бесконечность
08.01.2015, 10:47

Два вывода из позитивных достижений пифагорейцев в области арифметики и элементарной геометрии повлияли на последующее развитие науки и философии. Во-первых, вера в то, что «число» можно выразить определено таким образом, что по крайней мере физическая вселенная может быть последовательно описана в числовых значениях. Во-вторых, всеобщая уверенность в том, что выводы, полученные в ходе математических рассуждений, обладают большей достоверностью, нежели полученные любыми другими способами. Оба вывода были подвергнуты сомнению, особенно в последнее десятилетие XIX столетия. Каждое было последовательно изменено много раз, чтобы соответствовать возросшему уровню знаний, но базовые положения в обоих случаях оставались неизменными. Вместе они по-прежнему остаются сопряженными постулатами до сих пор не опровергнутой, но и не подтвержденной гипотезы: рациональный расчет (как минимум) физической вселенной возможен, и, когда он наконец будет выполнен, он будет соответствовать чувственному опыту и наделит человечество способностью предсказывать естественный ход развития природы.

В этой честолюбивой мечте не утверждается, что вся природа найдет отражение в одной-единственной формуле, как когда-то предполагали античные нумерологи. Но предвидение все более и более инклюзивного синтеза и последовательно более близкие приближения к «реальности» не все воспринимают как иллюзию, хотя сомневающихся предостаточно. Весь прошлый опыт подтверждает, что первый шаг в неизведанное в конкретном направлении может увести нас далеко от цели исследования, следующий уже не столь далеко, и так далее, пока мы не выдохнемся. Но все вместе приближаются к воображаемой конечной цели, хотя и никогда не достигают ее окончательно, а немногим приходится начинать путь сначала.

Ни в математике, ни в естествознании нет никакой уверенности в достижении подобного устойчивого прогресса. Одна надежда – что, продвинувшись по избранному пути столь далеко, мы (или наши преемники) сумеем найти верную дорогу к будущему. До настоящего времени все свидетельствует только лишь о беспорядочных предварительных исследованиях во многих направлениях с частыми возвращениями почти к отправной точке. Но не совсем. Некоторые знаменитые достижения все-таки имели место, пусть даже они лишь достигли преград, о которых и не подозревали наши предшественники. Они или удаляли преграды, или обходили их и перемещались на новое направление. Так же можем поступать и мы.

В этом непрерывном, хотя и не слишком заметном продвижении каждая эпоха передает следующей моральное обязательство не пренебрегать задачами, решенными только частично. Пока прошлое неясно, будущее неопределенно. Две трудноразрешимые задачи двадцатипятистолетней давности все еще сопротивляются окончательному решению и остаются столь же урожайными на новые методы скрупулезного размышления, как и в тот момент, когда с ними впервые столкнулись. Одна касается значения «числа»; другая – возможности и надежности дедуктивного умозаключения. Обе ведут свое начало от оптимистичной веры пифагорейцев, что «числа» в своем первозданном виде представляют собой самый простой язык, достаточный и для математики, и для рационального описания целой вселенной. Такой подход пифагорейцев был слишком упрощенным и явно недостаточным.

Как мы видели, ранние пифагорейцы признавали, что натуральные числа 1, 2, 3… и дроби, или «отношения», полученные делением одного целого числа на другое, не могут быть использованы для измерения столь элементарной «величины», как диагональ квадрата, сторона которого взята как единица измерения по длине. На самом деле они доказали, что корень квадратный из двух не является рациональным числом. В частности, они предположили, что их первичные числа (рациональные числа) не измеряют длину всех линий. Тогда возник вопрос значения такого понятия, как «длина линии». Было ли обязательно измерять все линии числами?

Перед ними открывались три возможности. Либо за иррациональными числами (такими, как корень квадратный из двух) не признается статус «числа»; либо первоначальное понятие «числа» расширяется и оно начинает включать в себя и рациональные и иррациональные числа; либо в науке появляется нечто совершенно новое, и числа перестают коррелироваться исключительно с линиями. Греки после пифагорейцев выбрали третью возможность и на этом пути столкнулись с понятием математической бесконечности.

Чтобы рассуждать о бесконечности, им пришлось усовершенствовать дедуктивный метод. Преодолевая сложности решения отдельных задач с иррациональными числами, они по неосторожности допустили в свою логическую цепочку некоторые допущения. Эти допущения либо не замечались, либо игнорировались как не имеющие прямого отношения и несущественные для математики, пока ближе к концу XIX столетия они резко не заявили о себе в современной математике. Вот тогда-то в самых основах, на которых зиждилась вся математика начиная с XVII века, стали проявляться противоречия и парадоксы. Сначала все обнаружили несовершенное понимание математической бесконечности. Затем более тщательный анализ некоторых парадоксов бесконечности показал, что более серьезные трудности веками были скрыты в логике, которую великие математики от Древней Греции до конца XIX столетия считали отвечавшей требованиям математики и достаточной для ее развития.

На первый взгляд некоторые из этих логических упущений были странно нематематическими. Одни были того же рода, что и высказывание Эпименида Критского «о лживости критян». О других же поговорим, когда представится случай. Пока будет достаточно рассмотреть, как тщательно возделывалась почва для этой сорной травы математиками и логиками в интервале между Пифагором и Платоном.

Из трудов Платона ясно видно, насколько отчетливо он ощущал фундаментальные трудности для эпистемологии, создаваемые иррациональными числами. Борьба по их преодолению, возможно, частично послужила причиной предполагаемого отказа Платона от теории идеальных чисел. Некоторые исследователи считают, что в преклонном возрасте Платон разуверился в своем главном научном достижении – теории идеалов, убедившись если не в полной безнадежности этой теории, то в ее неосуществимости. Правда это или нет, но существенно другое. Один из величайших философов в истории счел необходимым направить основательные усилия на понимание природы чисел, в особенности иррациональных. Проблема иррациональных чисел сильно занимала Платона, и он ругал своих собратьев греков, что они все еще верят (в большинстве своем) вместе с пифагорейцами, что все «измерения» рациональны. «Кто не признает, что диагональ квадрата несоизмерима с его стороной, – заявлял Платон, – не человек, а животное».

Примитивное сознание, по-видимому, испытывает инстинктивный ужас перед бесконечностью – беспредельной, безграничной, бескрайней – в любой из многочисленных форм, в которых бесконечность вынуждает обращать на себя внимание даже дикарей. Знакомые объекты их повседневной жизни кажутся им статичными и по существу неизменными, каждый со своей собственной, постоянно распознаваемой индивидуальностью. Дерево росло здесь, на этом самом месте, сегодня и не исчезало завтра. Оно могло считаться живым, и, без сомнения, в нем укрывался дух, но это было одно и то же дерево, а не другое каждый новый день. Но ветер был динамичным, изменяющимся от момента к моменту, он непрерывно менялся по силе и направлению. Ветер находился вне человеческой власти – «ветер веет где хочет», и его появление и его исчезновение были недоступны человеческому зрению. В некотором смысле ветер оказывался более живым, нежели камни и деревья; ведь ветер никоим образом не был ограничен ни местом, ни временем. Спустя столетия, когда люди научились свободно и без страха считать, предметы, которые были ограничены своим местом в пространстве, как галька и деревья, подчинились правилам чисел и были сосчитаны. Но ветры и непрерывно текущие воды рек и ручьев избежали владычества человека. Что позволяло им перемещаться с места на место и при этом оставаться неизменными во времени, оставалось тайной, и они не поддавались подсчету. Движение ускользало от чисел. Движение оставалось безграничным, бескрайним, бесконечным, не единицей и все-таки не множеством, как, например, горсть гальки.

Но много раньше этого инстинктивного осознания существования неисчислимой бесконечности не столь значительная, но все-таки достаточно тревожащая душу бесконечность появилась из, казалось бы, поддающейся пересчету природы. «Натуральные числа», которыми нумеровались камни и деревья, как выяснилось, не имели конца, хотя осязаемые предметы, обозначенные числами, можно было собрать в конечное множество. Что считали числа, когда все предметы в мире и все звезды в небе были пересчитаны? Хотя человек легко представлял конец всему количеству исчисляемых осязаемых предметов, разуму не удавалось постичь, где лежит предел числам и как выглядит самое большое число, которое уже не превысит никакое другое. Что тогда останется считать во вселенной числам, которые самопроизводились, если только не сами числа? Ничего. Получалось, числа существовали сами по себе. Поэтому пифагорейцы придумали, а за ними в это поверили и все, кто верил им, что числа не были изобретены людьми, а были обнаружены и записаны.

Некоторые выдающиеся математики (современные и из ближайшего прошлого), отказываясь приговаривать себя к подобной резкой дихотомии, пошли на компромисс и остановились на промежуточной позиции. Для Гаусса (1777–1855) (обычно включаемого в число трех или четырех величайших математиков в истории) число, одно из всех математических понятий, являлось потребностью разумной мысли, если не фактически «созданием этой мысли». Для Л.Э.Я. Брауэра (1882—[1966]), лидера в пересмотре логики бесконечного, люди рождены с «первоначальной интуицией» «бесконечной последовательности индивидуально различимых предметов», и поэтому, может статься, уже при рождении им дана способность представлять, что последовательность натуральных чисел не имеет никакого конца.

Но для большинства нет середины. Числа или плоды человеческого изобретения, или они существуют «вне времени и вне пространства», как существовали для Платона его идеальные числа, навсегда независимые от человеческого сознания, хотя и не за пределами некоторого восприятия со стороны человеческой мысли.

Кем бы ни был тот, кто первым постиг, что натуральные числа не имеют конца, он, видимо, был сокрушен внезапным открытием. Конечно, исчисляемые дни его жизни, даже если бы ему предстояло прожить миллион лет, оказывались ничем в бесконечной продолжительности вечности, и вся его жизнь была всего лишь мгновенной вспышкой в бесконечной темноте. Частица того позабытого ужаса нашла отражение в декаде пифагорейцев. Чтобы избежать «исчисляемую бесконечность» чисел, противостоявшую им, они спрятались за сказку, что все числа за пределом примитивных десяти, которые можно пересчитать по пальцам, имеют лишь повторную, подражательную действительность и могут игнорироваться для целей науки и философии. Самое раннее документарное свидетельство, что этот суеверный ужас перед «исчисляемой бесконечностью» был преодолен, – это доказательство Евклида (приблизительно III век до н. э.), что последовательность натуральных простых чисел 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37… бесконечна. Доказательство косвенное, и сами пифагорейцы могли бы додуматься до него, если бы они столь не боялись довериться разуму за пределами конечного свидетельства очевидности чувственного восприятия.

В чрезвычайно искусном доказательстве Евклида есть намек на коварные логические трудности, на которые реально прольется свет уже только в ХХ столетии. Особенно это касается метода доказательства от противного и значения «вещественности» в математике. Прежде чем описывать суть, следует вспомнить две детали традиционного дедуктивного умозаключения. Позже мы еще раз столкнемся с этим в связи с диалектикой Платона.

Если мы надеемся доказать, что некое утверждение S истинно и нет никакого иного способа доказать это, мы допускаем, что S, напротив, ложно. Тогда, если из этого допущения мы можем вывести противоречие, по классической логике немедленно следует вывод, что S истинно. Это и есть метод доказательства «от противного», знакомое reductio ad absurdum, или сведение к абсурду, из курса школьной геометрии. Впервые Евклид использовал метод от противного при доказательстве, что, если два угла треугольника равны между собой, противоположные этим углам стороны тоже равны. Он также прибегнул к этому методу при доказательстве, что последовательность простых чисел является бесконечной.

Другой метод классической логики также нашел частое применение в математических рассуждениях. Вместо допущения, как в методе от противного, что утверждение S, которое мы надеемся доказать, ложно, мы предполагаем, что оно истинно. Затем мы выводим следствия из этого предположения. Если известно, что одно из них является истинным, и если шаги, которые вели к этому, логически обратимы, мы можем вывести по всем правилам классической логики, что утверждение S истинно. Но если шаги необратимы, мы не можем вывести правомерность утверждения S, и действительно утверждение S оказывается ложным. В спешке или по невнимательности необходимая обратимость шагов иногда упускается из виду. Подобный метод получил название «анализа», хотя слово это имеет другое важное значение (ненужное для нашей цели) в современной математике. Некоторые историки приписывают изобретение этого метода Платону, который конечно же оценил его возможности и в философском и в математическом рассуждении, даже если он и не являлся ни первооткрывателем этого метода, ни тем, кто первым отстаивал его использование в геометрии.

Метод доказательства от противного и аналитический метод вместе составляют главную тактику, по крайней мере более ранних стадий платоновской «диалектики» – категоричное слово для краткого определения метода рассуждения, но значение которого дает не слишком туманное понимание конкретного метода достижения истины. В диалектике все ложное счищается, как скорлупа ореха, и отбрасывается прочь, пока не останется ничего или только ядро неоспоримо очевидных утверждений. Однако в который раз природа обнаруженных истин зависит от тех постулатов, на которых базируется логика. Ученый легко может предоставить универсальную вескость постулатов и подобным же образом доказать непогрешимость логики. Как результат – система истин, приемлемых для тех, кто сходится во мнении, что и постулаты и логика бесспорны. В частности, если система должна удовлетворить рациональное мышление, логика не имеет права строить выкладки, не соответствующие постулатам, на которых она базируется. Именно в этом пункте современные математики нашли необходимым проявить осторожность. Утверждение относительно конечного множества предметов или явлений может быть доказано или опровергнуто опытным путем, или поочередно для каждого элемента множества, или, если множество слишком многочисленно, созданием четко определенного правила, посредством которого такое испытание могло бы быть осуществлено в конечный отрезок времени. Если «предметы» являются суждениями и требуется установить правдивость их всех, классическая логика разрешает утверждать, что каждое из них определенно «истинно» или «ложно», и испытание должно сводиться к решению, что есть что. И снова каждый элемент конечного множества имеет легко распознаваемую индивидуальность, благодаря которой может быть отличим от остальных: он именно такой, а не иной. Мы по-прежнему остаемся в пределах области здравого смысла, и пока никто не внес серьезных возражений против математического рассуждения относительно конечного множества, основанного на этих допущениях традиционной логики. Но с бесконечным множеством или бесконечной совокупностью у рационального мышления возникает повод для сомнений.

Возьмем, например, арифметическое утверждение, в котором каждое натуральное число является или четным, или нечетным. Поскольку множество всех натуральных чисел бесконечно, невозможно проверить каждое из них (поделив на 2 и отметив, является ли остаток 0 или 1), чтобы установить, какое оно. Аналогично для простых чисел: мы утверждаем, что любое натуральное число является либо простым числом, либо составным, и, если нам дано число из конечного множества чисел, с которыми возможно производить вычисления в пределах человеческих возможностей, мы определим, какое оно. Но если мы не в состоянии генерировать все четные числа или все простые, до какой степени, если таковая известна, мы можем здраво заявлять, будто все натуральные числа являются или четными, или нечетными; или простыми, или составными? И до какой известной степени можно считать, что существует то, что не может быть ни сгенерировано, ни использовано в выполнимых вычислениях? Есть ли у доказательства «вещественности» без определения метода изготовления та же самая логическая надежность, как у доказательства, которое фактически показывает, как произвести «вещественное» нечто?

Такие сомнения не тревожат тех, кто полагает, что числа существуют сами по себе и люди лишь наблюдают и изучают идеальное царство, в котором числа продолжат существовать, когда человеческая раса прекратит загрязнять землю. Подобно правилам классической логики и теорем геометрии, они также «существуют» в запредельной для человечества сфере Вечной жизни.

Другие же, более приземленные, в попытках обнаружить любые присущие ограничения, которым подчинена определенная система дедуктивного умозаключения, достигают следующих неожиданных выводов. В любой дедуктивной системе, достаточно инклюзивной, чтобы принимать арифметику натуральных чисел, «неразрешимые» утверждения могут быть построены. Утверждение считается «неразрешимым» в отдельно взятой специфической системе, если ни его правдивость, ни его ошибочность не может быть доказана любым способом в пределах этой системы. Существование неразрешимых утверждений обосновывается их демонстрацией и доказательством, что они являются неразрешимыми. Это не вопрос неспособности доказать или опровергнуть некоторые утверждения из-за элементарного недостатка мастерства. Никто и никогда не сможет доказать или опровергнуть неразрешимое утверждение.

Этот конечный вид достоверности возникает из метода дедуктивного умозаключения, существовавшего приблизительно двадцать три столетия от Платона и Аристотеля к Гёделю, который первый выдвинул (1931) неразрешимое утверждение. Философы Античности и их традиционные последователи Средневековья, похоже, стремились ко всемогущей логике, которая в конечном счете разрешает любую проблему либо положительно, либо отрицательно. Математические логики ХХ столетия показали, что по крайней мере в математике цели древних недосягаемы. Но усилия всех математиков и логиков от Фалеса до ХХ столетия по достижению недосягаемого ни в коем случае не являлись пустой тратой времени и мысли. Возникнув из признания Фалесом, что дедуктивное умозаключение одновременно возможно и полезно, и продолжившись в успешных попытках греческих математиков (от Пифагора до Платона) дать последовательный счет как рациональных, так и иррациональных «величин», поиск универсальной достоверности многое выявил из того, что представляет непреходящий интерес для философии не меньше, чем для математики. Столетия позже часть всего, что было открыто во времена культивирования познания ради самого познания, оказалось непреложным и необходимым одиноким труженикам на заре новой эры науки. Можно привести классический пример. Кеплер, возможно, никогда не определил бы орбиты планет как эллипсы (с Солнцем в едином центре), если бы ему была недоступна греческая геометрия конических сечений. Не имея в качестве ориентира законов Кеплера, описывающих планетарные орбиты, Ньютон никогда не предложил бы миру свой закон всемирного тяготения; а без закона всемирного тяготения Ньютона развитие астрономии, физики и современной технологии шло бы совсем не так, как последние два с половиной столетия.

Потрясающее открытие пифагорейцев, что не все числа рациональны (то есть выражение a/b, где a, b – целые числа), знаменует основной поворотный момент в развитии дедуктивного умозаключения. Это оказалось началом возникновения математических теорий непрерывности и бесконечности. Это также послужило поводом для появления значительно иной эпистемологии и пересмотра некоторых старых теорий познания; а в направлении современной науки теория греков о непрерывности подготовила путь к пониманию движения. Эта эпохальная веха в развитии математической и философской мысли столь значительна, что кое-что из ее истории может быть интересным.

После открытия, что квадратный корень из двух не является рациональным числом, греческие геометры доказали подобное для многих других квадратных корней. Во времена Платона существование иррациональных чисел (как мы сейчас сформулировали бы) занимало философов, которые только от случая к случаю интересовались математикой. В диалоге Платона «Теэтет» Сократ пытается добиться от Теэтета объяснения понятия «знание».

«– Наберитесь храбрости и смело скажите, что вы считаете знанием:

Набравшись храбрости, Теэтет отвечает.

– Думаю, что науки, которые я изучаю у Феодора [Киренского, славившегося в 380 году до н. э.], – геометрия и те, что вы сейчас упомянули, и есть знание. Я бы еще прибавил мастерство сапожника и других ремесленников. Все это – знание».

Понятно, что Теэтет не поскупился и включил слишком много в свой перечень, дабы угодить столь непреклонному экзаменатору, как Сократ, и философ вынуждает свою жертву признать, что тот так и не сумел сформулировать, что такое «знание» как отвлеченное понятие, и затем пытается вытянуть из него, что такое глина. Сократ, видимо, мучительно пытается заставить Теэтета уловить и понять, что универсальная глина – не эта глина и не та глина, а глина как Вечная идея, Форма, в которой простые конкретные глины изготовителей кирпичей и очагов, гончары и другие ремесленники в некотором смысле «участвуют». Сократа не интересует ни одна из них. Он ищет нечто универсальное, абстракцию, идею, и Теэтет довольно оптимистично решает, будто постиг суть. В ответ на вежливую просьбу Сократа он делится с ним:

– Феодор выписал нам кое-что относительно [квадратных] корней, таких как 3 или 5, показывая, как в линейном измерении (то есть согласно сторонам квадратов) они несоизмеримы с единицей. [В нашей терминологии квадратные корни из 3 и 5 – иррациональные числа.] Он выбрал числа, которые являются корнями вплоть до 17, но дальше он не пошел. Поскольку имеются неисчислимые корни, мы задумали объединить их всех под одним названием.

Теэтет рассказывает Сократу, что они нашли желаемую классификацию, но признает, что не способен дать Сократу столь же удовлетворительный ответ по поводу знания, таким образом подтверждая постулат Платона (повторяемый в различных формах повсюду в его трудах), что философия является более основательной и сложной наукой в сравнении с математикой.

Кстати, в этом рассказе Теэтета нет ничего, что подтверждало бы вывод некоторых историков математики, будто Феодор Киренский первым доказал, что квадратный корень из 2 является иррациональным числом. Полугеометрическое доказательство Евклида (III век до н. э.) дается в книге 10, суждении 27 его «Элементов». Хотя и менее понятное, нежели современное строго арифметическое доказательство, исторически оно более значимо. Оно иллюстрирует радикальное преобразование греческой математической мысли как следствие появления иррациональных чисел. Евклид формулирует теорему: «Сторона квадрата и его диагональ не имеют никакой общей меры». «Мера» здесь самое важное слово. Если диагональ квадрата, длина стороны которого равна единице, не измерима числом (имеется в виду рациональным числом), то чем же она «измеряется»? Греческие геометры назвали это измерение «величиной» и построили теорию «измерения» величин, в которых вместо обращения за поддержкой к знакомым натуральным числам они призвали на помощь пространственную интуицию. В отличие от декларации Пифагора, что «пространство является числом», новое кредо могло бы утверждать, что «число есть пространство».

Как было упомянуто раньше, геометрия должна отталкиваться от некоторых, не поддающихся анализу, но общепринятых исходных концепций, таких как «точка» и «линия». Хотя греческий геометр и пытался объяснить, что он подразумевает под «величиной», создавать геометрию он начал как раз с примитивных исходных понятий. Он принял без доказательства, хотя и не слишком детально, что величины «одного и того же вида», например длины линий, или площади плоских фигур, или объемы твердых тел, ограниченных плоскостями, могут сравниваться с точки зрения равенства или неравенства. Таким образом, имело смысл отмечать, что одна величина больше, равна или меньше другой величины того же самого вида. Величина, содержащаяся целое число раз в другой «величине», называлась «мерой» той другой. Например, если измеряемые величины являются долями прямых линий, или, кратко, линий, линия А – мера линии В, если А можно уложить некоторое точное число раз на линию B. Если А – мера и В и C, А считается «общей мерой» для В и C. Если две величины имеют одну общую меру, они имеют любое требуемое конечное число общих мер, все из которых производные из первого. Так, например, линии длиной 10 и 12 футов имеют общую меру длиной 2 фута, и любая доля линии длиной 2 фута также является общей мерой. Но сторона и диагональ квадрата не имеют никакой общей меры. Греческие геометры говорили, что диагональ является «несоизмеримой» со стороной. Любые величины называются «несоизмеримыми», если они не имеют общей меры. Известная пара – диаметр и длина окружности круга.

Греческое решение проблемы измерения опиралось на стержневое определение «пропорции», приписываемое Евдоксу. В «Элементах» Евклида это знаменитое определение приводится пятым в пятой книге. Мы процитируем его в классическом варианте, чтобы иллюстрировать раннее свидетельство, как смутные предположения проникают незамеченными в математику, несмотря на предельную осторожность и желание не допустить этого. Сначала мы обращаем внимание, что «многократная» величина – вполне признанная и законная концепция: если «множитель» натуральное число m, m-кратное величины A получается, если отмерить число A m раз на линии достаточной длины. Если линия недостаточно длинна, ее можно увеличить – удлинить, пока ее длина не станет достаточной. Греческие геометры заметили необходимость включения (в качестве постулата) возможности удлинения линии до любой конечной длины и сделали это. Немного удивляет, что они упустили бесконечно большую нужду в объяснении понятия «то же самое отношение». «Первая из четырех величин считается имеющей «то же самое отношение» ко второй, что и третья к четвертой, когда берутся любые множители первой и третьей величины, и любые множители второй или четвертой величины, то кратная величина третьей величины больше, равна или меньше, чем кратная величина четвертой, соответственно, как и кратная величина первой больше, равна или меньше кратной величины второй величины». Это объясняет значение словосочетания «то же самое отношение» или «пропорционально», из чего появляется «пропорция» как простое вербальное определение. «Если первая из четырех величин имеет то же самое отношение ко второй, что и третья к четвертой, все четыре величины называются пропорциональными, или членами пропорции».

Такой была формулировка, по которой многие поколения школьников пытались воспринять элементарную геометрию до тех пор, пока «Элементы» Евклида в качестве школьных учебников не были отвергнуты. Для нашей цели нет необходимости переводить определение во вразумительную и легко воспринимаемую форму в символике, общепринятой сегодня. Но, даже не воспринимая смысла, а просто перечитывая это определение, как какое-нибудь упражнение по чтению, легко заметить, что за словами в дважды повторяемой фразе «любые числа, имеющие общие множители» прячется грандиозное предположение. «Числа с общими множителями» двух величин означает «одинаково кратные», например три или восемь раз взятая каждая из величин. Чтобы установить, находятся ли четыре величины в пропорции («любые» из определения), требуется проверить все пары чисел с общими множителями. Когда таких пар бесконечность, такая проверка выше человеческих сил. Но разве это возражение существенно? Не для тех, кто способен вообразить себя выполняющими бесконечное количество умножений и сравнений результатов, как то требуется по определению. Какая крайность более рациональна – вопрос спорный, если только не должно оказаться, что один или другой не вступает в противоречие своим преимуществом. Но определение обнаруживает, что в попытке избежать ловушек «числа» и обращаясь к геометрически (или визуально) интуитивной концепции «величины» мы теряем себя в той же самой бесконечности, как и прежде.

Теория измерения и сравнения величин была способна (с некоторым преувеличением) предоставить рациональный счет непрерывного движения. Но, как часто случалось, греческий гений испытывал антипатию ко всему переменному и динамичному, предпочитая увековечить себя в четко отличающихся объектах, каждый из которых стоит особняком от других в своей конечной завершенности и совершенстве. В их геометрии эта склонность к статичности в противоположность динамике произвела множество специальных теорем без единого намека на общий принцип, объединяющий значительное число в их единстве и целостности. Современная геометрия лишь пассивно интересуется частными теоремами. Что она ищет и находит? Всестороннее обобщение, из которого любое заданное или требуемое число частных теорем может быть получено однородными способами. Различие между античным подходом и современным как-то сравнили с разницей между попыткой зубилом по кусочку раздробить гранитную глыбу и той же самой попыткой, но уже с заложенным динамитом. Другое обычное сравнение уподобляет греческую математику Парфенону, а современную математику готическому собору. Древний храм – символ конца всего, что он представляет, собор же – символ неограниченной бесконечности.

Справедливо ли это сравнение, или оно основано лишь не более чем на воображении, но греческие математики остановились, не доходя до рационального описания движения, для которого их теория измерения была вполне достаточна. Преодолев основную трудность, создав работоспособную теорию соизмеримых и несоизмеримых величин, греки застопорились, столкнувшись с парадоксом, который могли бы, проигнорировав, обойти. Возможно не вполне осознавая, что несла в себе их теория, они фактически создали (или открыли) континуум (совокупность) «реальных чисел», в особенности представленный несчетно-бесконечным множеством всех точек на линии. Но потому что все их неприятности с иррациональными числами шли от попытки пифагорейцев распространить рациональные числа на линии, создатели континуума намеренно воздержались от применения «чисел» в «величинах». Линии сравнивали по равенству или неравенству, но общего арифметического определения «длины», применимой ко всем линиям, тщательно избегали. Пока не пришло время заменить несколько туманное понятие «величин» на обобщенный и точный эквивалент, выраженный числами, практичная теория движения едва ли была выполнима.

Прежде чем мы бросим взгляд на парадокс, который остановил греков на самом пороге современной математики, стоит посмотреть, как Платон попытался унифицировать все числа. Пифагорейцы произвели все натуральные числа от единицы, или Монады, через мистический союз Нечетного и Четного, или, что было нумерологически эквивалентно, брак Конечного с Бесконечным. С открытием иррациональности пифагорейские категории нечетного и четного, конечного и бесконечного были уже недостаточны для конкретизации понятий «числа» и «пространства». Вместо дискретной сущности числа, подобной горстке гальки, число стало по существу континуумом, непрерывностью, подобно атмосфере, передаваемой чувствами. В этом неотделимом и неисчислимом целом натуральные числа и все другие рациональные числа были рассеяны реже, чем звезды в полуночной тьме. Желая цельной замены совершенной простоты «все сущее есть число» Пифагора, Платон искал расширенное определение числа, которое вместило бы в себя и рациональные и иррациональные числа и которое, кроме того, вмещало бы в себя их как числа, независимо от пространственной интуиции, как в «величинах» математиков.

Если бы он преуспел в этом, он бы приблизил по меньшей мере часть современной теории континуума.

Вместо «конечного и бесконечного» Пифагора, Платон использовал понятие «большое и малое», что напоминает наш континуум, как, например, «все множество чисел, соответствующее точкам на линии».

Из этого и Единицы он попытался получить свои Идеальные числа, которые некоторые толкователи, включая Аристотеля, наделяли идентичной сутью с его Идеями или Формами. Но, подобно всем своим современникам, Платон оказался ограничен недостатком системы обозначений, способной записать и придать форму неуловимой концепции, которую он, возможно, создал в своем воображении, и профессионалам-платонистам еще только предстоит достигнуть согласия по поводу, какова она все-таки как единое целое. Возможно, если бы Идеальные числа были созданием юного Платона, а не Платона-старца, их было бы много проще понять.

Мы рассмотрим затем ту роль, которую парадоксы Зенона могли сыграть и, вероятно, сыграли в неспособности греков перейти от их теории величин к обобщенной арифметике, способной описать движение. «Бесконечное число», заложенное в «величинах» геометров, ускользало как от математиков, так и от философов вплоть до последней трети XIX столетия.

Категория: МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ | Добавил: admin | Теги: Мир Математики, занимательная математика, магия чисел, дидактический материал по математик, популярная математика
Просмотров: 551 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru