Четверг, 26.12.2024, 14:00
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                              Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Главная » Файлы » МИР МАТЕМАТИКИ » МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ

Аксиоматический метод
18.11.2015, 19:46

Со времен греков говорить «математика» — значит говорить «доказательство».

Николя Бурбаки


Энтузиазм, с которым адвокат Тауринус разорвал конверт, не теряя времени на поиски ножа, сменялся разочарованием по мере того, как он строчка за строчкой читал убористо исписанные две страницы. В этом письме, полученном одним ноябрьским утром 1824 года, содержался ответ Карла Фридриха Гаусса на заявление об открытии чрезвычайной важности — доказательстве пятого постулата Евклида.

К тому времени не осталось такого раздела физики и математики, куда Гаусс, которому исполнилось почти пятьдесят, не внес бы свой вклад, за что получил титул princeps mathematicorum — «король математиков». Однако ни в одной из его работ не был затронут важнейший вопрос того времени: верен ли пятый постулат? Можно ли через точку, не лежащую на данной прямой, провести одну и только одну прямую, параллельную данной? Ответ на этот вопрос в некотором роде позволил бы понять, какую форму имеет наш мир.

История Евклида и его труда, «Начал», где он изложил свои идеи, восходит к 300 году до н. э. Именно тогда этот древнегреческий математик, о котором нам почти ничего не известно, составил учебник по геометрии, где систематизировал все знания, которые до этого из уст в уста передавались пифагорейцами и учениками Платона. В то время как над входом в Академию Платона можно было прочесть фразу «Да не войдет сюда не знающий геометрии», «Начала» Евклида были предназначены для неподготовленного читателя и помогали понять науку о формах и фигурах с помощью простейших формулировок. Чтобы сделать свой труд более понятным и одновременно подчеркнуть четкость и строгость геометрии, Евклид начал изложение с ряда определений и аксиом, из которых, запасясь терпением, логически можно было вывести любое из сотен предложений, записанных в книге. Возможно, создание никакого другого учебника не имело столь радикальных последствий для развития всей человеческой мысли на протяжении последующих двух тысяч лет.



Евклид на картине Рафаэля «Афинская школа». Греческий математик изображен в окружении учеников, с циркулем в руках.


В словарях аксиома определяется как истина, не требующая доказательства ввиду своей очевидности. В этом смысле аксиомы являются выводами, к которым без особых усилий может прийти любой человек, даже далекий от цивилизации. Евклид проводил различие между общими утверждениями и постулатами: в то время как аксиомы вида «равные одному и тому же равны и между собой» применимы как к правильным многоугольникам, так и к богам, постулаты являются исключительно частью геометрии. Александрийскому мудрецу хватило пяти постулатов, на которые опирались «Начала». Первые три постулата гласили, что от всякой точки до всякой точки можно провести прямую; ограниченную прямую можно непрерывно продолжать по прямой и что из всякого центра всяким раствором может быть описан круг. Четвертый постулат гласил, что все прямые углы равны между собой, а согласно пятому, в размышлениях над которым Тауринус провел много месяцев, если прямая, пересекающая две прямые, образует внутренние односторонние углы, в сумме меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.



Две прямые пересекаются в той части плоскости, где углы меньше двух прямых.


Возможно, что первое впечатление современного читателя будет таким же, как и у современников Евклида: пятый постулат не столь очевиден, как предыдущие, и чтобы понять его, не обойтись без карандаша и бумаги. Именно поэтому очень скоро геометры начали ставить под сомнение его принадлежность к аксиомам и пытались доказать его исходя из остальных постулатов. Однако все подобные попытки оставались безрезультатными, хотя и позволяли получить утверждения, эквивалентные пятому постулату, которые помогали лучше понять его следствия. Наиболее известные следствия пятого постулата гласят, что сумма углов треугольника равна 180°, а через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной. Независимо от точной формулировки постулата о параллельности прямых ученые сомневались, является ли он самостоятельным относительно других постулатов или же, напротив, выводится из них с помощью искусных рассуждений и его можно исключить из списка аксиом. Через эти сомнения прошли все греческие и арабские комментаторы «Начал» и исследователи эпохи Возрождения.

Каково же было удивление Франца Адольфа Тауринуса в то ноябрьское утро, когда он, вместо того чтобы, превзойдя лучшие умы в истории, довольствоваться заслуженной славой, получил письмо, в котором Гаусс признавался, что после тридцати лет размышлений пришел к выводу: может существовать геометрия, в которой пятый постулат не выполняется. Однако эту новую, неевклидову науку следовало сохранять в тайне до тех пор, пока не будут уточнены все детали ряда теорем, которые, казалось, противоречили общепринятым убеждениям, незыблемым на протяжении двух тысячелетий. Новую геометрию не приняли бы те, кто считал, что треугольники и круги, описанные в книге природы, выглядят именно так, как их описал Евклид, и никак иначе. Ведь, подобно Аристотелю для схоластиков, Евклид был не просто человеком, но источником почти священного знания.

* * *

ДИАЛОГ ИЗ ФИЛЬМА «АГОРА»

(РЕЖИССЕР АЛЕХАНДРО АМЕНАБАР, АВТОР СЦЕНАРИЯ МАТЕО ХИЛЬ, 2009)

Гипатия: Синезий, каково первое правило Евклида?

Синезий: Почему ты спрашиваешь меня?

Гапатия: Просто ответь мне.

Синезий: «Равные одному и тому же равны и между собой».

Гипатия: Хорошо. Разве не подобны мне вы оба?

Синезий: Да.

Гипатия: А ты, Орест?

Орест: Да.

Гипатия: Хочу сказать всем, кто находится в этой комнате: у нас больше сходств, чем различий, и что бы ни произошло на улицах, мы останемся братьями и сестрами. Мы братья и сестры. Запомните, что ссоры — удел простолюдинов и рабов.



Афиша фильма «Агора», главной героиней которого является Гипатия Александрийская.

* * *

От неевклидовой геометрии — к теории относительности

Так могла бы начаться история, основанная на реальных событиях, в которой рассказывалось бы о Гауссе (1777–1855), измеряющем размеры многокилометрового треугольника, вершинами которого стали три горы в Германии. Целью эксперимента было определить, является геометрия пространства евклидовой или нет. По ходу истории к «королю математиков» присоединились бы другие действующие лица, в частности венгр Янош Бойяи (1802–1860) и русский математик Николай Лобачевский (1792–1856), которые при публикации своих открытий не испытывали таких опасений, как Гаусс.

В аристократических салонах ученые Европы восхищали бы публику, демонстрируя макеты удивительных поверхностей, на которых сумма углов треугольника была меньше 180°. Некто наверняка прервал бы одну из таких демонстраций, вскричав «Евклид умер!», а тот, кому были чужды революционные настроения, схватился бы за голову, потому что «никто не может одновременно служить двум господам: если геометрия Евклида истинна, то нужно исключить неевклидову геометрию из списка наук и поместить ее рядом с алхимией и астрологией»[1].

Однако на страницах книги, которую читатель держит в руках, рассказывается другая история. Она также начинается с открытия новой геометрии, но ее развязка еще более неожиданна: речь пойдет о первых экспериментах по созданию искусственного интеллекта и компьютерах. Неевклидовы модели не просто открывают путь в новые миры — важнейшее следствие их существования лежит в сфере философии. Евклид выбрал свои аксиомы потому, что их истинность была очевидной.

Тем не менее когда ученые обнаружили, что на некоторых поверхностях через данную точку можно провести бесконечно много прямых, параллельных одной и той же прямой, а на других поверхностях нельзя провести ни одной прямой, параллельной данной, вопрос о том, какие аксиомы являются истинными, утратил смысл. Почему постулат о параллельности прямых должен быть более истинным, чем постулаты, отрицающие его? В действительности корректность того или иного постулата будет зависеть только от того, какие объекты мы изучаем.

Альберт Эйнштейн (1879–1955) сумел извлечь пользу из сложившейся ситуации и благодаря неевклидовой геометрии решил задачу, не дававшую покоя самому Исааку Ньютону (1643–1727). Согласно закону всемирного тяготения, открытому Ньютоном в 1685 году, два тела притягиваются друг к другу с силой, которая увеличивается с ростом произведения их масс и с уменьшением квадрата расстояния между ними. Этот закон позволил описать движение планет и траекторию падения яблок с деревьев, однако важнейший вопрос по-прежнему оставался без ответа: как может Земля воздействовать на Луну, если их разделяет почти 400 тысяч километров? Действие, совершаемое на расстоянии, считалось чем-то относящимся к алхимии и ни в коем случае не могло быть принято научной школой того времени. Чтобы преодолеть это препятствие, был даже воскрешен эфир, упоминавшийся в греческой мифологии, — летучая субстанция, заполняющая промежутки в пустоте, благодаря которой сила тяготения распространяется от одного тела к другому. Однако различные эксперименты поставили под сомнение существование эфира или чего-то подобного.

И тогда на сцену вышел Эйнштейн. Любой может представить себе, что произойдет с простыней, которую натянули два человека, если в ее центр бросить мяч, однако предположить, что точно так же ведут себя планеты в космосе, смог лишь этот гениальный сотрудник патентной конторы в Берне. Тело столь большой массы, как Земля, искажает пространство вокруг себя, и гравитация есть не что иное, как мера кривизны пространства. Если маленький шарик бросить на простыню, деформированную под весом мяча, он немедленно скатится к ее центру. Аналогично, тело в состоянии свободного падения притянется к поверхности Земли в результате искажения пространства вокруг нее. Если тело находится далеко от Земли и при этом движется, как, например, Луна, то благодаря искажению пространства оно не притянется к Земле, а будет удерживаться на земной орбите. Таким образом, в той геометрии, где гравитация является мерой кривизны пространства, пятый постулат Евклида не выполняется.



Графическое изображение деформации пространства, вызванной силой земного тяготения.


Эйнштейна совершенно не волновало, что его теория относительности разрушила мечты о евклидовом космосе, поскольку со временем он понял, что геометрия носит сугубо формальный характер. В первой главе книги «О специальной и общей теории относительности» — научно-популярном изложении результатов своих исследований, опубликованном в 1920 году, — Эйнштейн объясняет, что геометрия основана на ряде понятий («точка», «плоскость» и «прямая»), которые мы четко представляем себе, а также на определенных простых предложениях, аксиомах, которые кажутся нам истинными, если трактовать их согласно нашим представлениям о понятиях геометрии, к которым они относятся. Исходя из этих основных принципов остальные предложения доказываются методом дедукции: если все промежуточные рассуждения корректны, то истинность вывода зависит исключительно от истинности исходных посылок. Таким образом, чтобы ответить на вопрос, какую форму имеет наш мир, необходимо знать, верны пять постулатов Евклида или нет. Однако найти ответ на этот вопрос методами геометрии нельзя. Более того, этот вопрос не имеет смысла.

Эйнштейн продолжал: бесполезно пытаться доказать, действительно ли через две точки можно провести только одну прямую. Все, что нам известно, — это то, что в геометрии идет речь о понятиях «точка» и «прямая линия», которые связаны следующим образом: две различные «точки» определяют единственную «прямую».

Чтобы спор об истинности аксиом имел смысл, сначала нужно установить их соответствие с реальностью: если всякий раз, когда Евклид упоминает «точку» и «прямую линию», мы будем трактовать эти понятия привычным нам способом, то аксиома «через две точки можно провести прямую» будет корректной, и мы сможем подтвердить ее истинность экспериментально. Однако ничто не указывает, что в геометрии эти понятия нужно понимать точно так же, как и в обычной жизни, — напротив, геометрия есть не более чем множество абстрактных идей и отношений между ними.



Одна из последних фотографий Альберта Эйнштейна, сделанная около 1950 года.


Рассмотрим пример, который впервые упоминается в статьях итальянского геометра Эудженио Бельтрами (1835–1900). Пусть пространство, в котором находятся объекты, заключено внутри круга (не включая его границу). Предложим следующее простое соответствие: когда Евклид говорит о «точке», мы будем представлять точки внутри круга, а когда он говорит о «прямой линии», мы будем представлять себе отрезки, начало и конец которых лежат на границе круга. В такой трактовке две «точки» определяют единственную «прямую линию» и, следовательно, первый постулат Евклида будет выполняться. Перед тем как рассмотреть пятый постулат, напомним, что две «прямые» параллельны, если они никогда не пересекаются.

Возьмем произвольную «точку» внутри круга, например его центр, и произвольную «прямую линию». Соединив «точку» с концами отрезка («прямой линии»), получим две «прямые», которые проходят через нее и параллельны исходной прямой, так как гипотетические точки пересечения этих прямых находятся на границе круга, а она не принадлежит пространству! Следовательно, в модели Бельтрами постулат о параллельности прямых не выполняется.



Неевклидова модель Эудженио Бельтрами.


Обратите внимание, что выше слова «точка» и «прямая линия» в одних случаях заключены в кавычки, а в других — нет. Таким образом мы проводим различие между абстрактными понятиями «точки» и «прямой линии», которые могут иметь различные толкования, и реальными точками и прямыми, на основе которых были определены эти понятия. Тот, кто считает, что описанная нами неевклидова модель не более чем математическая игра, возможно, изменит свою точку зрения после краткого экскурса в биологию. Расстояние, видимое человеческим глазом, в лучшем случае составляет несколько километров. Как следствие, все прямые, которые пересекаются за границей видимой нами области, выглядят для нас одинаково, а все, что мы видим вокруг себя, в достаточной мере соответствует модели, предложенной Бельтрами. В конце концов, какой будет разница между двумя прямыми, которые пересекаются в Нью-Йорке, и прямыми, которые пересекаются в Лос-Анджелесе, для европейца? Маленький мир человека не описывается законами геометрии Евклида. Однако человеческая философия не ограничивается этим маленьким миром.

Мы выбрали модель Бельтрами произвольно, из множества возможных. В том же самом пространстве мы можем назвать «прямыми» дуги окружности — в этом случае не будет выполняться первый постулат, так как две данные точки можно будет соединить неограниченным числом способов. Чтобы однозначно определить окружность, требуются три точки, и именно возможность выбрать третью точку произвольно и будет препятствовать выполнению постулата. Если в некоторых моделях первый постулат выполняется, а в других — нет, то истинность утверждения, согласно которому через две «точки» проходит единственная «прямая», зависит от значения понятий «точка» и «прямая», и задаваться вопросом о его истинности столь же нелепо, как и размышлять об истинности пророчества «В году А родится В», где читатель может заменить А и В произвольными значениями.



Пространство, в котором две разные прямые соединяют точки А и В и в котором не выполняется первый постулат Евклида.


Именно это мы имели в виду, когда говорили, что Эйнштейн очень четко понимал исключительно формальный характер геометрии. Несмотря на это его интересовали не логические отношения между понятиями, а конкретный вопрос о том, как объяснить действие сил на расстоянии, не используя понятие эфира. Для Эйнштейна «точками» были точки пространства, положение которых определялось координатами, указывающими их местоположение и момент времени, когда мы их рассматриваем. «Прямыми» для него были кратчайшие пути между двумя точками, вдоль которых движется луч света. Если для того чтобы объяснить природу пространства, физику нужно отказаться от постулата о параллельности прямых, то почему бы не сделать этого? В мае 1919 года, спустя четыре года после того, как Эйнштейн определил тяготение как меру кривизны Вселенной, экспедиции на африканский остров Принсипи удалось обнаружить, как отклоняется луч света звезд, близких к Солнцу и видимых только во время солнечных затмений. Именно эти эксперименты вкупе с теоретическими исследованиями, а не использование неевклидовой геометрии, позволили подтвердить корректность теории относительности.

Разумеется, когда Евклид работал над «Началами», он не думал о том, что его «точки» и «прямые» можно заменить чем-то другим. Для него все составляющие геометрии были наполнены физическим значением. Доказательством этому служат формулировки аксиом, которые, в частности, гласят, что для двух данных точек можно провести соединяющую их прямую, а не что для всякой пары «точек» существует единственная «прямая», их содержащая, — как мы обычно понимаем эту аксиому. Различие между двумя этими формулировками заключается в этом едва заметном переходе от точек к «точкам» и от «можно провести» к «существует». Именно этот переход привел к тому, что геометрия обрела абстрактный характер, и родилась математическая логика.


Новые системы аксиом

Первым следствием революции, произошедшей в геометрии, стало переопределение понятия аксиомы: теперь не имело смысла искать «очевидные истины». С момента рождения неевклидовой геометрии аксиома стала представлять собой не более чем утверждение, которое из соображений удобства становится основой некоторой теории, после чего из этого утверждения выводятся теоремы. Живительная особенность языка заключается в том, что мы можем сочетать слова так, как нам заблагорассудится, но если мы будем соблюдать определенные правила, наш собеседник всегда поймет нас, даже если мы произносим фразу впервые. Однако придумав новое слово, мы должны объяснить его значение другим людям, и если они посчитают это слово бесполезным или неблагозвучным, оно вряд ли приживется в языке. Нечто подобное происходит и в логике: утверждение нельзя доказать «с чистого листа» — на этом листе вначале нужно записать некоторые принципы, истины, с которыми согласны все, а также правила дедукции или логического вывода, благодаря которым мы сможем получить новые утверждения на основе аксиом.

Классический пример подобного правила — modus ponens, «утверждающий модус», который заключается в следующем: «Если А, то В» и если А истинно, то В истинно. Вновь отметим, что значение правил логического вывода, как и значение аксиом, исключительно формально. Так, силлогизм: «Все люди могут летать.

Икар — человек, следовательно, он может летать» — корректен, в то время как высказывание: «Если идет дождь, земля мокрая. Земля мокрая, следовательно, прошел дождь» корректным не является. Хотя высказывание о мокрой земле после дождя выглядит разумным, а высказывание о летающих людях — совершенно абсурдным, первое высказывание корректно, а во втором перепутаны причина и следствие. Действительно, после дождя земля мокрая, однако если земля мокрая, это необязательно связано с дождем: например, по улице просто могла пройти поливальная машина. Также существует modus tollens (от лат. modus tollendo tollens — «путь исключения исключений»), который гласит, что из утверждения «Если А, то В» при ложном В выводится ложность А, как в высказывании «Если что-то неизвестно, об этом лучше промолчать. Если я говорю, то я знаю, о чем говорю».

* * *

ОБОЗНАЧЕНИЯ ОСНОВНЫХ ЛОГИЧЕСКИХ ОПЕРАЦИЙ

Структуру modus ponens и modus tollens удобнее запомнить, если записать их в виде схем, в которых посылки и заключение разделены линией. Если мы обозначим через ¬А и ¬В отрицания А и В, то есть утверждения, противоположные им по смыслу, то modus ponens и modus tollens будут описываться следующими схемами:

* * *

В общем случае правило вывода верно, когда его результат является истинным вне зависимости от толкования посылок. Так, высказывание «Если Р и Q, то R» корректно вне зависимости от значений Р, Q и R: всякий раз, когда Р и Q одновременно будут истинными, также будет истинным. И вновь речь идет о формальном критерии, который подразумевает, например, что высказывание «Если ноль отличается от единицы и если единица равна нулю, то вы мой отец» является корректным. Так как ни в одном из возможных миров ноль не может отличаться от единицы и одновременно быть равным ей, исходные посылки никогда не будут верными. Это понимали уже схоластики, которые сформулировали выражение ех contradictione sequitur quodlibet, то есть «из противоречия следует все что угодно».

* * *

MODUS TОLLENS И ФАЛЬСИФИЦИРУЕМОСТЬ

Согласно философу Карлу Попперу (1902–1994), modus tollens — это единственное корректное правило вывода в естественных науках. Когда мы пытаемся объяснить какое-то явление, то научный метод, который Поппер назвал гипотетико-дедуктивным, заключается в том, чтобы выдвинуть гипотезу и провести эксперимент, который позволит опровергнуть ее. Если из гипотезы Н следует наблюдаемое следствие 0, которое неизменно повторяется в лабораторных условиях, то Н становится научным законом. Однако если мы не можем поочередно проверить все возможные ситуации, в которых применима наша гипотеза, то мы никогда не сможем быть уверенными в ее истинности. Чтобы быть уверенными в том, что все лебеди — белые, нужно исследовать все уголки планеты, однако достаточно увидеть всего одного черного лебедя, как это произошло с первыми поселенцами в Австралии, чтобы опровергнуть гипотезу. Этот принцип известен под названием принципа фальсифицируемости и является не чем иным, как modus tollens: «Если гипотеза Н верна, то из нее следует следствие 0. Так как мы наблюдаем противоположное 0, то гипотеза Н ложна».



Философ Карл Поппер в 1980-е годы.

* * *

Теперь, когда мы знаем, что такое аксиомы и правила вывода, мы можем дать точные определения понятиям «теория», «доказательство» и «теорема», которые на предыдущих страницах более или менее соответствовали привычным представлениям. Доказательство — это процесс, позволяющий получить новые результаты путем применения правил вывода к аксиомам. На практике доказательство представляет собой конечную последовательность утверждений, или высказываний, первое из которых обязательно должно быть аксиомой (в математике нет «чистых листов»!), а каждое из последующих может быть либо аксиомой, либо выводиться из предшествующих высказываний с помощью правил вывода. Последнее высказывание доказательства называется теоремой. Теория — это множество аксиом, правил вывода и всех теорем, которые можно доказать с помощью этих правил на основе аксиом. В некоторых случаях вместо «теория» мы будем говорить «система аксиом».

До сих пор центром нашего внимания была геометрия Евклида — теория, состоящая из пяти постулатов «Начал», правил вывода, подобных утверждению «равные одному и тому же равны и между собой», и всех теорем о кругах, треугольниках и многоугольниках, которые только может представить себе читатель. Мы также упомянули о неевклидовой геометрии, которая содержит первые четыре постулата геометрии Евклида и отрицание пятого постулата (утверждение, согласно которому через точку, не лежащую на данной прямой, можно провести бесконечно много прямых, параллельных данной). Однако настоящим главным героем этой книги является арифметика — теория, в которой рассматриваются числа, используемые при счете и называемые натуральными.


Аксиомы арифметики

В свете всего вышесказанного для определения арифметики нужно прежде всего найти ее аксиомы. В конце XIX века эти поиски занимали умы многих ученых, поскольку в первой половине столетия их мечтой было описать окружающий мир, а во второй — точно определить, что же такое натуральные числа. А уже на основе этих чисел нетрудно найти определение для других видов чисел, например отрицательных или дробных: так, число —1 получается добавлением знака «минус» к натуральному числу 1 и используется, когда мы хотим указать на различие между двумя направлениями, например на шкале термометра или при движении средств на банковском счете. В свою очередь, 2/3 получается делением 2 на 3 и используется, когда одно число нельзя нацело разделить на другое. Но как определить числа, не определяемые на основе других?

Ученые давали различные ответы на этот вопрос. Георг Кантор (1845–1918) предложил определять натуральные числа как числа, описывающие количество элементов множества, однако, как вы увидите в следующей главе, это «лекарство» только ухудшило положение «больного». Неудача Кантора, несомненно, обрадовала его заклятого врага Леопольда Кронекера (1823–1891), для которого вопрос об описании натуральных чисел был закрыт с формулировкой: «Бог создал натуральные числа. Всё остальное — работа человека». Джузеппе Пеано (1858–1932) был не настолько экзальтированным и предложил новую точку зрения, которую впервые представил в 1889 году в книге под названием «Начала арифметики, изложенные новым методом». До настоящего момента, рассуждал Пеано, предпринимались попытки сначала определить натуральные числа, а затем найти аксиомы, на основе которых можно было бы доказать теоремы. Почему бы не поступить наоборот? Сначала можно составить перечень аксиом, затем определить числа как объекты, удовлетворяющие им, и, возможно, в числе этих объектов будут не только привычные нам числа.



Обложка книги Джузеппе Пеано «Начала арифметики, изложенные новым методом».


Этот хитроумный шаг позволил Пеано возвести здание арифметики на основе всего пяти аксиом, пятая из которых, известная как аксиома индукции, вновь оказалась немного сложнее остальных. В основу новой арифметики легли особое число ноль и операция, ставящая в соответствие каждому натуральному числу другое, которое называется следующим за ним. Далее этот итальянский математик предложил описать на этом языке натуральные числа как объекты, обладающие следующими свойствами:

1) ноль есть натуральное число;

2) число, следующее за натуральным, тоже является натуральным;

3) ноль не следует ни за каким натуральным числом;

4) всякое натуральное число следует только за одним натуральным числом;

5) если множество А содержит ноль и содержит следующее число для любого числа, принадлежащего этому множеству, то А содержит все натуральные числа.


Первая теорема, которую можно доказать на основе аксиом Пеано, гласит, что единица отлична от нуля, однако сначала нужно объяснить, что такое «единица». Внимательно изучив доказательство этой теоремы, можно получить представление о том, как работать с аксиомами и правилами вывода. Как мы уже говорили, доказательство того, что единица отлична от нуля, обязательно должно начинаться с аксиомы, каковой является аксиома Пеано: «число, следующее за натуральным, тоже является натуральным» (1). Затем можно использовать другую аксиому или высказывание, получаемое из предыдущих согласно логическому правилу вывода.

На этом шаге мы выберем аксиому, которая звучит так: «Ноль есть натуральное число» (2). Теперь с помощью modus ponens из двух первых утверждений: «число, следующее за натуральным, тоже является натуральным» и «ноль есть натуральное число» — выведем третье высказывание доказательства: «существует число, следующее за нулем» (3). Для краткости будем называть это число единицей и будем обозначать его 1. На этом шаге можно перезаписать аксиому № 3, заменив ее эквивалентной формулировкой: «если число — ноль, то оно не является следующим ни для какого числа» (4), и применить высказывание (3), которое мы уже доказали выше и которое гласит: «следующее за нулем число есть единица». Использовав modus tollens, получим: «Если число — ноль, оно не является следующим ни для какого числа. Единица — следующее за нулем число, следовательно, единица — это не ноль». Именно так звучит наша теорема: «Единица отлична от нуля» (3).

Теперь, доказав, что ноль и единица — различные числа, мы можем задуматься: образуют ли объекты, удовлетворяющие аксиомам Пеано, бесконечный ряд, иными словами, существует ли бесконечно много натуральных чисел? Мы ведь знаем, что каждое число отличается от всех предыдущих. Именно здесь крайне важна аксиома индукции, которая позволяет доказывать теоремы обо всех натуральных числах, не рассматривая каждое из них конкретно. Чтобы понять, в чем заключается принцип индукции, представьте себе числа как последовательность костяшек домино, из которых мы выбрали несколько и подтолкнули их. Аксиома индукции подтверждает ожидания читателя: если мы подтолкнем первую костяшку в ряду и если при падении каждой костяшки будет падать следующая за ней, то после того как упадет первая костяшка, упадут и все остальные.

После того как мы доказали, что существует натуральное число, отличное от нуля, которое называется единицей, эти же рассуждения можно повторить и показать, что существует еще одно число, отличное от нуля и единицы. И действительно, «число, следующее за натуральным, тоже является натуральным» (1) и «единица есть натуральное число» (2). Применив modus ponens, получим, что «существует число, следующее за единицей» (3). Это число мы назовем двойкой. Согласно аксиоме № 4, «всякое натуральное число следует только за одним натуральным числом» (4). Наша теорема гласит, что «ноль и единица — различные числа» (3), таким образом, вновь применив modus ponens, имеем: «число, следующее за нулем, отличается от числа, следующего за единицей» (6), и этими числами, о которых идет речь, являются единица и двойка. С другой стороны, двойка и ноль — различные числа, так как двойка следует за единицей, а ноль не следует ни за каким натуральным числом.

Если мы повторим эти же рассуждения, заменив единицу на двойку, то докажем, что существует натуральное число, которое мы назовем «три» и которое отличается от всех уже упомянутых, то есть от нуля, единицы и двойки. Повторив эти же рассуждения достаточное число раз, можно доказать, что конкретное число, например 1729, отличается от следующего за ним и от всех предыдущих. Благодаря аксиоме индукции, чтобы доказать утверждение «всякое натуральное число отличается от следующего», достаточно доказать, что единица отличается от нуля (иными словами, что падает первая костяшка домино) и что это же утверждение верно для произвольного конкретного числа и следующего за ним (другими словами, что при падении костяшки домино падает и следующая за ней).

Читатель, дошедший до этих строк, усомнится, обязательно ли прибегать к такому многословию, чтобы убедиться в элементарном, а именно в том, что два натуральных числа различны. И он будет совершенно прав, поскольку ни один отец не станет таким способом объяснять сыну, что две карамельки в кармане не то же самое, что всего одна. Однако логика описывает не рассуждения обычной жизни, а способ, которым нужно рассуждать, чтобы гарантированно прийти к истинному заключению. Мы избавили термины «ноль», «число» и «следующее» от всех интуитивно понятных значений, сведя их к абстрактным понятиям, связанным между собой посредством аксиом и правил вывода.


Чего мы ожидаем от аксиом

Благодаря новой концепции аксиом и доказательств, те теории, в которых немногие очевидные истины занимали привилегированное положение, стали более демократичными системами. В этих системах любые высказывания могут быть названы аксиомами. Однако это верно лишь априори, поскольку неразумно допускать, чтобы грудной ребенок был избран премьер-министром, и столь же неразумно выбирать аксиомы совершенно произвольно. Подобные ограничения никак не умаляют полезность и аксиоматических теорий. Евклид четко понимал, как следует выбрать аксиомы, но когда использовать повседневный опыт оказалось невозможно, пришлось определить формальные критерии корректности аксиом: непротиворечивость, рекурсивную перечислимость и полноту.

Чтобы объяснить, что означает непротиворечивость системы аксиом, немного пофантазируем о технологиях будущего. Мы легко можем предположить, что через сто лет группа ученых создаст всеразрушающий снаряд, способный в мгновение ока уничтожить любой предмет. Мы также можем представить, что, создав новые сплавы, другая группа ученых спроектирует самолет, неуязвимый для любого оружия.

Каждое из этих утверждений вполне допустимо, например, в научно-фантастическом фильме, однако в сценарии вряд ли обе эти гипотезы будут выполняться одновременно, поскольку если кто-то выстрелит всеразрушающим снарядом по неуязвимому самолету, мы столкнемся с парадоксом.

В общем случае говорят, что множество аксиом является непротиворечивым, если оно не порождает противоречий, то есть если из него нельзя вывести некоторое высказывание и его отрицание одновременно. Так, аксиомы «существует всеразрушающий снаряд» и «существует неуязвимый самолет» противоречивы, так как из первой следует, что при ударе снаряда самолет разрушится, а из второй — что самолет останется неповрежденным. Требование непротиворечивости — минимальное требование к аксиомам, но проблема заключается в том, что гарантировать непротиворечивость системы аксиом часто можно только с помощью более сложных теорий, непротиворечивость которых ставит больше вопросов, чем ответов. Эта гигантская черепаха, которая стоит на другой черепахе, та — на третьей и т. д. до бесконечности, будет одним из чудовищ, с которым придется сразиться героям нашей истории.

* * *

В ПРОТИВОРЕЧИВОЙ СИСТЕМЕ АКСИОМ ЛЮБОЕ ВЫСКАЗЫВАНИЕ — ТЕОРЕМА

Допустим, что мы хотим доказать истинность высказывания Q. Так как система аксиом противоречива, существует теорема Р, отрицание которой, не-Р, также будет теоремой. Это означает, что можно найти доказательства Р и не-Р. Как мы уже говорили, когда речь шла о правилах вывода, заключение «Если Р и не-Р, то Q» является корректным, так как исходные посылки никогда не выполняются одновременно. Так как в противоречивой системе аксиом Р и не-Р — теоремы, объединив правило вывода «Если Р и не-Р, то Q» и доказательства Р и не-Р, с помощью modus ponens можно показать, что Q — теорема. Иными словами, сколь бы невероятным это ни казалось, в мире, где ноль равен единице и одновременно отличается от нее, вы — мой отец (даже если вы — женщина). Ex contradictione… — из противоречия следует все что угодно.

* * *

Чтобы объяснить понятие полноты, оставим в стороне научную фантастику и воспользуемся примером, который мне подсказало одно из произведений аргентинского писателя Гильермо Мартинеса. Представьте, что в закрытой комнате совершено убийство. Прибыв на место преступления, полиция обнаруживает рядом с трупом двух подозреваемых. Каждому из них известна вся правда о том, кто же убийца. Тем не менее если подозреваемые не признаются, полицейским придется начать поиски отпечатков пальцев, следов ДНК и любых других косвенных доказательств, которые позволят вынести обвинение. Если же эти поиски ни к чему не приведут, то подозреваемые будут выпущены на свободу.

Или: после тяжелого рабочего дня полицейские отправляются в бар, чтобы расслабиться. Один из них только что поступил на службу, и остальные едва знакомы с ним. Судя по тому, что он рассказывает сослуживцам, он родился в Саламанке, затем его семья сразу же переехала в Барселону, потому что его родители хотели жить у моря. При этом его коллеги не могут понять, женат он или нет. Нет сомнений в том, что на этот вопрос существует только один правильный ответ.

Из обеих ситуаций понятно, что довольно часто «истинное» не означает «доказуемое». Именно это имеют в виду логики, когда говорят о неполноте системы аксиом. В идеале все истинные утверждения о некоторых объектах можно доказать на основе нескольких аксиом. Но, как правило, теория содержит высказывания, которые нельзя ни доказать, ни опровергнуть, — такие высказывания называются неразрешимыми. Опровергнуть высказывание означает доказать его отрицание: например, опровергнуть высказывание «все лебеди белые», которое мы уже упоминали, означает доказать, что «существует лебедь не белого цвета». Полные теории — это теории, которые не содержат неразрешимых высказываний, или, что аналогично, это системы аксиом, в которых для произвольного высказывания можно доказать или это высказывание, или обратное ему. Внимательный читатель уже заметил, что во втором определении полноты расплывчатое понятие «истина» заменено понятием «доказательство». Так удалось разрешить некоторые из парадоксов, которые издавна волновали философов.

С большинством математических теорий дело обстоит так же, как в нашем первом примере: никто не может однозначно ответить, виновны подозреваемые или нет. Но не удивляйтесь, когда мы скажем, что всегда можно выбрать аксиомы так, чтобы теория была полной: для этого система аксиом должна содержать все истинные высказывания. В этом случае все доказательства будут выполняться в одну строчку, так как всё, что мы захотим доказать, уже будет аксиомой. Почему бы нам не поступить именно так, ведь полные теории — это настоящий рай для логиков?

Всё доказуемое будет совпадать с истинным, а доказательства будут максимально короткими. Однако множество всех возможных истинных высказываний слишком велико, чтобы его можно было выбрать в качестве множества аксиом. Нас интересует не столько длина доказательств, сколько возможность проверить их корректность каким-либо автоматическим методом. Так как в доказательстве каждое утверждение является либо аксиомой, либо выводится из предыдущих с помощью правил, чтобы узнать, доказывает ли перечень высказываний некоторую теорему, мы должны иметь возможность подтвердить, что некоторое высказывание является аксиомой. И если мы включим в систему слишком много аксиом, подобная проверка потребует бесконечно много времени.

Система аксиом называется рекурсивно перечислимой, когда подобного не происходит, то есть когда за конечное число шагов можно доказать, является ли произвольное утверждение аксиомой. Критерий рекурсивной перечислимости становится препятствием на пути «жадного» логика, который хочет доказать все больше и больше теорем, не позволяя добавить к системе все необходимые аксиомы. Разумеется, рекурсивно перечислимыми являются системы аксиом геометрии и арифметики, а также, в общем случае, все системы, содержащие конечное число аксиом. Также существуют рекурсивно перечислимые системы с бесконечным множеством аксиом, поскольку основной особенностью таких систем является не число аксиом, а то, что корректность любого доказательства, составленного на их основе, можно подтвердить за конечное число действий.

* * *

РАЗРЕШИМАЯ СИСТЕМА С БЕСКОНЕЧНЫМ ЧИСЛОМ АКСИОМ

Одну из возможных рекурсивно перечислимых систем с бесконечным числом аксиом можно получить, если развернуть одну из аксиом Пеано в бесконечное число утверждений. Аксиому «О не следует ни за каким натуральным числом»» можно считать сжатой формой множества высказываний: «О не следует за нулем», «О не следует за единицей», «О не следует за двойкой» и т. д. до бесконечности. Предположим, что мы хотим определить, является ли некоторое высказывание одной из этих аксиом. Разумеется, оно будет принадлежать приведенному выше списку, если будет начинаться со слов «О не следует за…», а далее будет указано некоторое число. Напомним, что «единица»» в действительности означает «число, следующее за нулем», «два» — «число, следующее за числом, следующим за нулем» и т. д. Нам останется только подсчитать, сколько раз в нашем высказывании встречается слово «следующее». Следовательно, рассматриваемая нами система аксиом является рекурсивно перечислимой.

* * *

Подведем итог. Аксиоматический метод появился примерно в 300 году до н. э., с написанием «Начал». Евклид считал, что аксиомы являются очевидными истинами, соответствующими нашим представлениям о предметах в физическом мире, однако открытие новых геометрий в середине XIX века покончило с этим реалистическим подходом. С того времени аксиомами называются всего лишь высказывания, выбранные из соображений удобства в качестве основы математической теории.

Когда мы применяем к аксиомам определенные правила вывода, например modus ponens или modus tollens, мы получаем новые истинные высказывания, которые в математике называются теоремами. Истинность теорем определяется доказательствами — конечными последовательностями высказываний, первым из которых является аксиома, следующими — либо аксиомы, либо утверждения, полученные из предыдущих по правилам вывода. Теория представляет собой множество аксиом, правил вывода и всех теорем, которые можно доказать с помощью этих правил на основе аксиом.

Логика — раздел математики, занимающийся изучением теорий в абстрактном виде. Поэтому любая система аксиом вызывает у логика интерес не своим содержанием, а тем, соответствует ли она трем свойствам: непротиворечивости, рекурсивной перечислимости и полноте. Первое свойство гарантирует, что теория не содержит противоречий, и это необходимый минимум, позволяющий построить математическое здание. Рекурсивная перечислимость означает, что теория не содержит слишком много аксиом — иначе возникнет ситуация, когда мы не сможем определить, является ли данное доказательство истинным. Наконец, полнота теории означает, что ее аксиом достаточно для вывода всех истинных утверждений в области, к которой она относится. Иными словами, в такой теории можно доказать или опровергнуть любое утверждение формальными методами.

В следующей главе мы рассмотрим ряд парадоксов, которые в конце XIX столетия пошатнули тысячелетние основы математики. К счастью, вскоре были предложены различные решения, для которых кажущейся непротиворечивости аксиом было недостаточно — ее еще нужно было доказать. Об этой формалистской программе мы поговорим в главе 3. Затем мы расскажем об одном из прекраснейших элементов логики — теореме Гёделя о неполноте, которая определяет равновесие между непротиворечивостью, полнотой и рекурсивной перечислимостью.

Категория: МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ | Добавил: admin | Теги: Мир Математики, все о математике, занимательная математика, популярная математика, дидактический материал по математик, сайт по математике
Просмотров: 1314 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ
ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты
  • Статистика

    Онлайн всего: 3
    Гостей: 3
    Пользователей: 0
    Форма входа


    Copyright MyCorp © 2024
    Яндекс.Метрика Top.Mail.Ru