Суббота, 16.01.2021, 09:21
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 4
Гостей: 4
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА

Астрономическое решение
12.12.2014, 13:01

Допустим, что наблюдатель находится в центре Земли и у него есть надежные часы.

Сначала он наблюдает прохождение звезды через нулевой меридиан в момент времени t1 затем Земля поворачивается на некоторый угол, и наблюдатель видит, что эта же звезда проходит через меридиан места в момент времени t2. Разница во времени t2 — t1 соответствует разнице долгот между нулевым меридианом и меридианом места. Так как наблюдатель находится не в центре Земли, а на ее поверхности, он может наблюдать только момент прохождения звезды через меридиан места. Момент прохождения звезды через нулевой меридиан определяется по астрономическим таблицам, после чего, определив разницу во времени, наблюдатель сможет решить задачу о долготе.

Основным решением задачи было наблюдение затмений. Допустим, что наблюдатель находится посреди Атлантического океана и наблюдает лунное затмение.

Если он знает, что затмение произошло в Лондоне в момент времени h1 а сам он увидел затмение в момент времени h2 то, определив разницу во времени h2 — h1 он сможет вычислить разницу между долготой корабля и долготой Лондона. Основная проблема заключается в том, с какой точностью мореплаватель может определить время h2 по своим песочным часам. Кроме того, затмения наблюдаются не каждую ночь, а определять долготу требуется как минимум раз в сутки.

В 1514 году Иоханнес Вернер создал метод лунных расстояний, позднее улучшенный. Мы знаем, что Луна каждый час проходит расстояние, примерно равное ее диаметру, то есть половину градуса. Если у нас есть очень точная карта звездного неба, показывающая, когда Луна «касается» различных известных звезд, мы сможем определить, когда это «касание» можно наблюдать с нулевого меридиана. Если наблюдатель определит точный момент времени, в который Луна «касается» звезды, то сможет вычислить разницу во времени между нулевым меридианом и меридианом корабля. Однако время на корабле определяется по неточным песочным часам.

Кроме того, сложная траектория движения Луны была недостаточно хорошо изучена. Метод лунных расстояний стало возможно использовать с удовлетворительной точностью только в середине XVIII века. На тот момент Джон Флемстид провел более 40 тысяч наблюдений Луны и звезд, астроном-наблюдатель Тихо Браге составил прекрасный атлас звездного неба, Галлей подробно изучил взаимное влияние Земли и Луны друг на друга, а Джон Хэдли изобрел квадрант — астрономический инструмент, при использовании которого с помощью зеркал можно было определять угловую высоту небесных тел над искусственным горизонтом в случаях, когда естественный горизонт не виден. На основе квадранта позднее был создан секстант, дополненный небольшим телескопом и обладавший более высокой точностью.

В 1610 году Галилей открыл спутники Юпитера: Ио, Европу, Ганимед и Каллисто, которые впоследствии стали называться галилеевыми спутниками. Их затмения наблюдались с четкой периодичностью, и Галилей предложил решение задачи о долготе, основанное на результатах наблюдений затмений. Однако увидеть спутники Юпитера было непросто даже с обсерватории на берегу, поэтому метод Галилея оказался неприменим на практике. Хотя ученый даже сконструировал специальный шлем с подзорной трубой, упрощавший наблюдение, сам он признавал, что на его точность могло повлиять даже биение сердца наблюдателя. После смерти Галилея и с усовершенствованием телескопов этот метод начали применять на суше для более точного определения долготы и, следовательно, составления более точных карт. Людовик XIV говорил, что «потерял больше земель по вине своих картографов, чем по вине своих врагов».

Еще один метод определения долготы заключался в оценке изменений магнитного поля. Но от этого метода пришлось отказаться, поскольку отклонение магнитного поля зависело не только от места, но и от времени наблюдений.

Музыка сфер. Астрономия и математика - _101.jpg

Галилеевы спутники Юпитера, слева направо: ИоЕвропа, Гэнимед, Каллисто.

* * *

ЗАТМЕНИЯ ГАЛИЛЕЕВЫХ СПУТНИКОВ И СКОРОСТЬ СВЕТА

В 1680 году итальянский астроном Джованни Доменико Кассини опубликовал свои таблицы затмений галилеевых спутников Юпитера, в которых приводились дата и время последующих затмений. Юный датский астроном Оле Рёмер показал: когда Земля находилась ближе к Юпитеру, затмения наблюдались раньше расчетного времени, а когда Земля отдалялась от Юпитера, затмения наблюдались позже расчетного времени. Отсюда следует: расхождения возникают из-за того, что лучу света требуется определенное время на то, чтобы пройти расстояние, равное диаметру земной орбиты. Следовательно, скорость света составляет 300000 км/с.

Категория: МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА | Добавил: admin | Теги: Мир Математики, сферы, занимательная математика, астрономия и математика, популярная математика, дидактический материал по математик
Просмотров: 492 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru