Среда, 27.01.2021, 18:57
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 12
Гостей: 12
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА

Древняя задача определения долготы
12.12.2014, 13:02

Из Гибралтара, на юге Пиренейского полуострова, на родину отплывает пять английских кораблей. Туманной ночью 22 октября 1701 года в условиях плохой видимости, неподалеку от архипелага Силли (к юго-западу от Англии) адмирал Клаудесли Шовелл собирает офицеров, чтобы определить координаты кораблей и дальнейший курс. Все сходятся на том, что нужно следовать на север. Однако матрос с флагманского корабля «Содружество» сообщает капитану, что, по его подсчетам, корабли следуют неверным курсом, так как их координаты были определены неверно. На борту поддерживается строжайшая дисциплина, и матроса немедленно вешают за нарушение субординации. Спустя несколько часов «Содружество» налетает на огромные подводные камни близ архипелага Силли и тонет за несколько минут.

Эта же судьба постигает еще три корабля, и лишь одному удается спастись. При кораблекрушении погибло более 2 тысяч человек.

Это далеко не единственная история подобного рода. Прокладывать курс вдали от побережья было очень сложно, поскольку моряки не умели точно вычислять координаты корабля в открытом море. Конечно, любой опытный моряк умел определять широту по высоте Полярной звезды (в Северном полушарии) или по расположению Солнца в полдень. Однако с долготой все было намного сложнее.

Угловая высота Полярной звезды над горизонтом равна широте корабля.

Этим же свойством обладают и другие звезды, в частности Южный Крест или Пояс Ориона, однако оценить их положение на небе несколько сложнее. Аналогично, широту нетрудно определить по Солнцу в момент прохождения меридиана в 12 часов по солнечному времени, когда тени предметов будут самыми короткими.

Чтобы определить широту места, нужно измерить высоту Солнца над горизонтом А, зная склонение Солнца в день наблюдений.

С помощью простейшего инструмента (квадранта или поперечного жезла) или более современного приспособления (секстанта или октанта) несложно измерить высоту Солнца над горизонтом в момент, когда оно пересекает меридиан север — юг, то есть когда оно находится в наивысшей точке над горизонтом. Этот угол, как показано на рисунке дальше, равен А = 90° — ф + D, склонение Солнца в любой день года можно узнать из астрономического ежегодника. Имеем ф = 90°— A + D.

Музыка сфер. Астрономия и математика - _100.jpg

Высота Солнца в момент прохождения местного меридиана равна 90 — ф (где ф — широта) с поправкой на склонение Солнца, которое может быть положительным (летом и весной) или отрицательным (зимой и осенью).

Однако определить долготу совсем не просто. Христофор Колумб в 1492 году попытался достичь Индии, следуя вдоль параллели с момента отплытия с Канарских островов. Широта его кораблей была постоянной, и Колумб не достиг Японии только потому, что путь ему преградила Америка. При таком выборе курса решения задачи о долготе удалось избежать. Но если бы корабли Колумба не достигли Америки, участники экспедиции погибли бы, поскольку Колумб преуменьшил размеры Земли, и когда на горизонте показалась земля, запасы провианта уже подходили к концу. Колумбу повезло…

Почему же определить долготу так сложно? Как мы уже говорили, в силу вращения Земли ось вращения и экватор определяются однозначно. Окружности, параллельные экватору, имеют разные размеры, но обладают одним общим свойством: все они меньше экватора. Однако меридианы, представляющие собой большие круги земной сферы, проходящие через ее полюса, имеют совершенно одинаковую длину, и нулевой меридиан выбирается только из соображений удобства. Основная проблема заключается в том, чтобы определить угловое расстояние из любой точки земной поверхности до этого меридиана, который выбран не из астрономических, а из политических соображений. В этом и заключается основная проблема при определении долготы. Несколько веков назад, когда корабли отправлялись в плавание, моряки располагали лишь примитивными методами определения координат. Они обычно определяли пройденное расстояние, выбрасывая за корму веревку и подсчитывая число узлов, ушедших за борт, в определенный интервал времени. Измерив этот интервал с помощью примитивных песочных часов, моряки вычисляли мгновенную скорость корабля и на основе этого значения примерно оценивали координаты. Однако скорость судна изменялась в зависимости от ветра, течений и других факторов. Иными словами, определить точное положение корабля в открытом море было практически невозможно. Путешествия длились месяцами, недостаток витамина С угнетал сердечно-сосудистую систему, моряки страдали от цинги. Власти всех морских держав были озабочены проблемой определения долготы, которая более 300 лет волновала умы великих ученых.

Как мы уже объясняли, 15° долготы эквивалентны одному часу, или, что аналогично, 1 градус долготы эквивалентен 4 минутам времени. К примеру, на экваторе, где длина земной окружности наибольшая, это расстояние будет равно примерно 111 км. Иными словами, ошибка в одну минуту соответствовала отклонению примерно на 27 километров. К югу или к северу от экватора расстояние, соответствующее одному градусу долготы, уменьшается, что также вносит неточность.

После нескольких месяцев, проведенных в открытом море, определить местонахождение корабля было невозможно. Из-за этого капитаны опасались отклоняться от более или менее известных маршрутов, что приводило к скоплениям судов в определенных регионах и упрощало жизнь пиратам. К примеру, в 1590 году португальский корабль «Мадре де Деуш» был атакован английской эскадрой, которая захватила ценный груз стоимостью полмиллиона фунтов, что в то время составляло половину всего бюджета английского министерства финансов. Задача определения долготы требовала незамедлительного решения.

Учитывая склонность капитанов следовать известным маршрутам, в XVIII веке был предложен любопытный проект. Организаторы проекта хотели поставить на якорь в Атлантическом океане по кораблю каждые 600 миль. Команды этих кораблей должны были стрелять из пушек и запускать фейерверки, видимые на расстоянии в 100 миль, и тем самым указывать курс капитанам других судов. Целью авторов проекта (впрочем, нереализованного) было создание безопасной морской «автомагистрали».

Испанские короли Карл V и Филипп II, король Великобритании Георг II и французский король Людовик XIV потратили много сил на поиски решения. Торговля с Вест-Индией, военные экспедиции, желание открывать новые земли привели к тому, что роль мореходного дела возросла, и, как следствие, увеличилось число кораблекрушений, уносивших множество жизней и ценного груза. Из-за нерешен ной задачи о долготе морские карты до XVII века грешили значительными неточностями. Составлять их вообще было непросто, из-за чего возникали серьезные споры о принадлежности территориальных вод. Все это объясняет, почему многие острова в Океании были открыты по два и даже по три раза. Мореплаватель открывал остров, не нанесенный на карту, и объявлял его собственностью своего короля. Несколько лет спустя другой мореплаватель вновь «открывал» этот же остров и отмечал его на морской карте в другом месте. Впоследствии это приводило к проблемам и спорам, особенно между французскими и английскими мореплавателями, которые были искренне уверены, что именно они открыли тот или иной остров.

Наконец было предложено два принципиально разных решения задачи о долготе: астрономическое и механическое. Астрономическое решение основывалось на наблюдениях периодического движения небесных тел с последующим сравнением их положения на небе. Механическое решение заключалось в создании механических часов, позволявших с точностью определять время. Дело в том, что задача определения долготы на самом деле сводится к задаче определения времени: разница во времени эквивалентна разнице в долготе, и требовалось просто точно измерить эту разницу.

Любой достаточно опытный моряк мог определить, когда наступал солнечный полдень, однако для решения задачи этого было недостаточно. Если бы моряк знал, когда наступает солнечный полдень в порту отплытия, то, определив разницу во времени, он смог бы узнать разницу долгот (повторим: один градус долготы соответствует четырем минутам). Требовалось найти способ, позволявший узнавать время в порту отплытия.

Категория: МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА | Добавил: admin | Теги: Мир Математики, сферы, занимательная математика, астрономия и математика, популярная математика, дидактический материал по математик
Просмотров: 541 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru