Суббота, 10.04.2021, 15:17
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 5
Гостей: 5
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА

Решение, найденное часовщиком
12.12.2014, 12:56

Требовалось создать точные механические часы, пригодные для мореплавателей. С их помощью моряки смогли бы определять точное время в порту отплытия (с известной долготой). Если бы часы были идеально точными, то достаточно было определить по Солнцу полдень, посмотреть на часы, показывающие время в порту отплытия, и найти разницу во времени. А уж на ее основании очень просто определить долготу корабля. Первые маятниковые часы изготовил Гюйгенс, однако они сохраняли точность лишь в определенных погодных условиях. Следовательно, использовать такие часы в открытом море было нельзя.

Разные страны предлагали премии тому, кто сможет изготовить механические часы необходимой точности: так, король Испании Филипп III пообещал пожизненную пенсию тому, кто решит задачу о долготе; британский парламент во времена правления королевы Анны, в 1714 году, принял Декрет о долготе, согласно которому того, кто решит задачу с погрешностью менее половины градуса (то есть 50 километров на экваторе), ждала премия в 20 тысяч фунтов. Как видите, требуемая точность была очень велика, а огромный размер премии наводит на мысли, что англичане были на грани отчаяния — от решения задачи о долготе зависела экономика всей страны. Чтобы автор решения получил премию, его часы должны были сохранять требуемую точность хода во время плавания до Вест-Индии и обратно. Для контроля был учрежден Совет по долготе, куда вошли глава Гринвичской королевской обсерватории, глава Лондонского королевского общества, морской министр, председатель палаты общин, делегат от вооруженных сил и несколько ученых. Получить премию пытались многие. Мы отметим лишь Джереми Такера: он сконструировал часовой механизм, позднее дополненный двумя усовершенствованиями, которые используются и по сей день. Речь о вакуумной камере со стеклянными стенками и особой системе, благодаря которой часы не останавливались во время завода.

Решение задачи о долготе нашел плотник Джон Гаррисон, который сконструировал первые часы из маленьких латунных деталей, когда ему не было и двадцати лет. Гаррисон дополнил часы таблицей уравнения времени для сравнения фактического и солнечного времени. Он же придумал маятник, состоящий из двух стержней, изготовленных из чередующихся полос различных металлов, чтобы компенсировать воздействие перепадов температуры на точность хода. Однако в морских часах маятнику было не место, поэтому Гаррисон разработал особый механизм, обеспечивавший равномерную передачу энергии от сжатой пружины.

* * *

СОЛНЕЧНОЕ ВРЕМЯ И ЗВЕЗДНОЕ ВРЕМЯ

Из соображений удобства мы делим сутки на 24 часа — именно за такой промежуток времени Солнце проходит через меридиан одного и того же места два раза подряд. Мы уже говорили, что в действительности используем среднее солнечное время: движение Земли вокруг Солнца описывается законом равенства площадей, поэтому Земля иногда движется чуть медленнее, иногда — чуть быстрее, но в среднем Солнце совершает полный круг над горизонтом и дважды проходит через меридиан места за 24 часа.

Если в качестве точки отсчета мы будем использовать не Солнце, а неподвижные звезды, то увидим, что период обращения Земли несколько меньше: любая неподвижная звезда проходит два раза подряд через один и тот же меридиан места за 23 часа 56 минут 4 секунды, так как Земля при вращении вокруг Солнца движется в опережением в 3 минуты 56 секунд.

Музыка сфер. Астрономия и математика - _102.jpg

Разница между звездным и солнечным временем.

Джон Гаррисон обеспечивал точность своих часов по результатам наблюдений за определенными звездами из своей примитивной обсерватории. Он обнаружил, что звезды постоянно появлялись на небе на 3 минуты 56 секунд раньше, чем прошлой ночью. Таким образом он добился расхождения всего в одну секунду в месяц — стандартной погрешностью для часов того времени была одна минута в сутки. Гаррисон получил займ от Совета по долготе на изготовление своего первого морского хронометра Н1. На работу ушло пять лет. Хронометр был изготовлен из дерева, весил 34 кг и находился внутри стеклянного резервуара объемом в 1 м (отметим, что первый хронометр Гаррисона работает до сих пор). Он был погружен на корабль, отплывавший в Лиссабон, и очень пригодился в плавании. В 1737 году Совет по долготе был созван в первый раз и единогласно утвердил хронометр Н1. Единственным, кто счел хронометр несовершенным, был сам Гаррисон, который попросил новый займ на внесение необходимых изменений. В 1739 году был создан хронометр Н2, в 1751-м — НЗ. Лишь хронометр Н4 отличался существенно меньшим весом и размером.

Любопытно, что Гаррисон начал работу над принципиально иным хронометром после того, как получил от одного из учеников в подарок карманные часы. Н4 имел 133 мм в диаметре и весил 1300 г, одного завода хватало на 30 часов, при этом во время завода хронометр не останавливался. В октябре 1761 года Гаррисон отправился на Ямайку и по прибытии в Порт-Ройял, после двух месяцев в пути, астрономическими методами определил, что отставание хронометра составило всего 5 секунд, что соответствовало ошибке в 1,25 минуты долготы, или примерно 2000 м — намного меньше, чем требовалось Декретом о долготе. Однако Совет постановил, что проведенных экспериментов недостаточно для определения долготы в открытом море. Дело в том, что в Совет вошли три новых участника, три математика, которые настаивали на том, что долгота Порт-Ройяла не была установлена по результатам наблюдения за спутниками Юпитера. При этом капитан корабля не знал и не мог знать, что должен определить долготу таким способом. Хронометр Н4 был вновь погружен на борт корабля в 1764 году, и на этот раз по результатам испытаний Совет постановил: «часы идут с достаточной точностью». Однако Совет предложил Гаррисону лишь половину премии и внес дополнительное условие: изобретатель должен изготовить еще два хронометра и открыть свои секреты, чтобы можно было начать серийное производство.

На изготовление копии, Н5, у Гаррисона ушло три года. Ему было уже семьдесят девять лет, и он не знал, успеет ли закончить работу. К счастью, король Георг III настоял, чтобы Совет выплатил Гаррисону оставшуюся часть премии. Погрешность хода хронометра Н5 составила всего 1/3 секунды в день, а само устройство было подлинным шедевром.

В хронометрах Гаррисона практически отсутствовало трение, им не требовалась смазка, они были прекрасно сбалансированы и поддерживали точность хода в любой температуре. Так что стоит отдать должное искусству мастера.

Гаррисон умер в 1776 году, и доступ к его наработкам получили многие часовые мастера, которые приступили к изготовлению собственных хронометров. В 1860 году на 200 кораблей английского флота приходилось 800 хронометров. За короткое время это устройство стало привычным средством навигации и заняло важное место в мореходном деле. Можно сказать, что морское господство Британии, да и вообще появление Британской империи стало возможным благодаря быстрому и точному определению координат кораблей в открытом море. Этот способ применялся еще совсем недавно, пока ему на смену не пришли системы спутниковой навигации.

Категория: МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА | Добавил: admin | Теги: Мир Математики, сферы, занимательная математика, астрономия и математика, популярная математика, дидактический материал по математик
Просмотров: 504 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ

ИНФОРМАТИКА В ШКОЛЕ

ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"

ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru