Четверг, 22.10.2020, 07:24
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 6
Гостей: 6
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » НАУКА О ПЕРСПЕКТИВЕ

Объем купольного свода галереи
05.02.2016, 20:23
В «Книге о пяти правильных телах» Пьеро делла Франческа рассматривает любопытную задачу, в которой нужно определить объем общей части двух цилиндров равного диаметра, пересекающихся перпендикулярно друг другу.


Два перпендикулярных цилиндра равного диаметра в разрезе.

(источник: FMC)


Он пытался определить объем следующей фигуры.



Удвоенный купольный свод.

(источник: FMC)


Пьеро делла Франческа подтвердил, что объем этого тела равен 2/3·d3, где d — диаметр цилиндров. Более того, он посчитал необходимым объяснить, почему объем вычисляется именно по этой формуле. Подобный подход не применялся в других книгах того времени. В доказательстве использовались две следующих фигуры.



На первой иллюстрации изображен квадрат со вписанной в него окружностью, в которую вписан треугольник АВС, где ВС — диаметр окружности. На второй иллюстрации изображен прямоугольник той же высоты, что и квадрат на первом рисунке, и ширины, равной диагонали этого квадрата. В этот прямоугольник вписан эллипс, в него, в свою очередь, — треугольник KLM, где LM — большая ось эллипса. Далее Пьеро делла Франческа установил следующее соотношение:


Затем он перешел к следующим объемным фигурам.




Удвоенный купольный свод и вписанная в него пирамида.

(источник: FMC)



Сфера, вписанная в удвоенный купольный свод, и конус, вписанный в сферу.

(источник: FMC)


Далее без дополнительных объяснений он приводит следующее соотношение, полученное тем же способом, что и в случае с плоскими фигурами:


После этого он выражает объем удвоенного свода V:


Это равносильно


Иными словами,


А так как


Пьеро делла Франческа нашел верное решение, что можно доказать с помощью интегрального исчисления.




Вычисление объема удвоенного свода с помощью интегралов.

(источник: FMC)


Если мы рассечем фигуру плоскостью р, параллельной ее экватору, и обозначим за х расстояние от этой плоскости до центра фигуры, по теореме Пифагора получим

y = √(r2x2)


Следовательно, площадь сечения фигуры плоскостью р, которое представляет собой квадрат со стороной 2у (выделен серым цветом), равна

А(х) = 4(rх2).

Объем фигуры будет равен


Задачу о нахождении объема общей части двух перпендикулярных цилиндров равного диаметра рассматривал Архимед в своем «Методе». Однако этот труд, утерянный во времена Античности, был обнаружен лишь в 1906 году на палимпсесте — древней рукописи с текстами религиозных песнопений, где сохранились следы более раннего текста, принадлежавшего Архимеду. Нет никаких доказательств тому, что этот труд Архимеда был известен во времена Пьеро делла Франческа, поэтому неизвестно, на какие источники он опирался в своих вычислениях.

Поэтому Пьеро делла Франческа можно считать математиком первой величины, обладавшим великолепным пространственным и геометрическим мышлением. Его идеи в области математики и искусства, выраженные в его книгах, и видение пространства и фигур, которое мы можем наблюдать на его картинах, отразили дух той удивительной эпохи конца кватроченто, когда искусство и математика шествовали рука об руку.

Категория: НАУКА О ПЕРСПЕКТИВЕ | Добавил: admin | Теги: Мир Математики, популярная математик, перспектива, занимательная математика, сайт по математике, дидактический материал по матем
Просмотров: 477 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru