Вторник, 26.01.2021, 08:11
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 8
Гостей: 8
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » НАУКА О ПЕРСПЕКТИВЕ

Революция Мазаччо. «Троица»
05.02.2016, 21:57
Мазаччо, следуя пути Джотто в искусстве и используя метод Брунеллески, первым смог добиться глубины и реалистичности изображения. Его работы, созданные в период возврата к классическому искусству и обновления скульптуры, возглавляемого Донателло, отличаются динамичностью. В его картинах повседневная жизнь флорентийцев («история», как ее называл Альберти) тесно связана с божественным.

Прекрасным примером этих изменений в искусстве являются фрески капеллы Бранкаччи, над которыми он начал работу совместно с Мазолино да Паникале, впоследствии завершенные Филиппино Липпи. На стенах капеллы мы видим смешение стилей и постепенный переход от позднего средневековья Мазолино к возрождению Мазаччо и позднее к сочетанию этих направлений. В этом же стиле работал и Липпи.

В этом же духе Мазаччо задумал «Троицу» (заказчик неизвестен) — фреску огромных размеров на левой стене флорентийской церкви Санта-Мария-Новелла. Работы длились с 1426 по 1428 год.

Возможно, эта фреска стала для него последней, так как он скоропостижно скончался летом 1428 года во время путешествия в Рим в возрасте 27 лет, всего шесть из которых он активно занимался творчеством. Именно в «Троице» влияние метода перспективы Брунеллески прослеживается наиболее четко. Картина, изображенная на стене великолепной капеллы, нарисована так, что кажется зрителю абсолютно реальной.



Мазаччо. «Троица» (1426–1428).


В капелле, изображенной на картине, также прослеживается влияние архитектурного стиля Брунеллески, однако Мазаччо раскрасил арку в розовый цвет, отказавшись от традиционного для Брунеллески серого камня. По бокам этой арки, поддерживаемой двумя ионическими колоннами, расположены два коринфских пилястра с капителями такого же розового цвета. Капелла завершается бочарным сводом, украшенным квадратными кессонами.

Точка схода линий, изображенных в перспективе, расположена удивительно низко. Напомним, что она должна располагаться на уровне глаз зрителя, который входит в церковь и смотрит на картину. При ином расположении точки схода не возникает ощущения, что изображенная на картине капелла реальна. Также в перспективе изображены Дева Мария и Святой Иоанн, на которых, как и на купол, зритель смотрит снизу вверх. Они стоят параллельно колоннам и пилястрам, обрамляя центр композиции, где изображен Христос, распятый на кресте.

В верхней части композиции выделяется центральная ось симметрии, совпадающая с вертикальной линией креста. На ней располагается точка схода. Эта ось симметрии также делит пополам фигуру Бога Отца, протягивающего руки к креcту, и Святого Духа, изображенного в виде голубя, парящего между Христом и Богом Отцом. По обе стороны от этой оси симметрично относительно нее попарно расположены четыре фигуры: Дева Мария и Святой Иоанн — на переднем плане, поодаль — два коленопреклоненных донатора.

Композиция представляет собой равносторонний треугольник, символизирующий святую троицу. Не углубляясь в вопросы, связанные с геометрией композиции, заострим внимание лишь на некоторых из них, например на треугольнике, в основании которого изображены донаторы, а в вершине — голова Бога Отца. Другой треугольник образуют гвозди, которыми руки и ноги Христа прибиты к кресту. Еще один треугольник образуют глаза Марии, Христа и Святого Иоанна.

Более важным в нашем понимании является чередование синего и красного цветов, нарушающее доминирующую осевую симметрию, что придает картине динамичность и акцентирует внимание на глубине, умело переданной перспективным изображением архитектурных элементов.



Точка схода при изображении в перспективе расположена очень низко.



Некоторые примеры использования равносторонних треугольников при построении композиции.



Чередование синего и красного цветов в композиции.


Так, ярко-красный цвет туники и головного убора донатора слева внизу визуально соединяется с более нежным красным цветом одеяния Святого Иоанна справа; далее, вновь слева, — с цветом туники, накинутой на плечо Бога Отца, и, наконец, справа — с одним из красных кессонов, изображенных на потолке купола, которые чередуются с кессонами синего цвета в шахматном порядке. Таким образом передается восходящее движение, траектория которого сближается с осью симметрии.

Синий цвет симметрично чередуется с красным: воображаемая линия соединяет тунику донатора, одеяние Девы Марии, накидку на плече Бога Отца и заканчивается на кессоне синего цвета, симметричном предыдущему относительно центральной оси.

Осевая симметрия разбивается «смещением» чередующихся цветов, которые поднимаются вверх вдоль центральной оси симметрии.

Симметрия также нарушается в нижней части композиции, где изображен скелет, отделенный панелью алтаря. Надпись над ним гласит: Lo fu gia quel che voi sete: e quel chi son voi ancor sarete («Я был тем же, что и вы, но и вы станете тем же, чем стал я»).

Этот скелет и горсть земли под крестом отсылают к библейской традиции, по которой углями страстей Христовых были угли от дерева, выросшего на могиле Авеля.

Мы рассказали о первой оси симметрии, которая подчеркивает композицию и акцентирует ее силу. Другая ось, перпендикулярная ей, на которой расположены коленопреклоненные донаторы, определяется пересечением плоскости алтаря с картинной плоскостью. Третья ось, перпендикулярная первым двум, несомненно, является главным лучом зрения наблюдателя, глаза которого расположены на той же высоте, что и точка схода.

Плоскости, перпендикулярные последней оси, четко отделяют друг от друга три плана картины. На ближнем плане, снаружи арки, преклонили колени донаторы.

Далее изображены три библейских персонажа: Святой Иоанн, Дева Мария и Христос, которые располагаются на одну ступень выше. Далее, в глубине картины, вблизи оси симметрии и чуть выше, растворяясь в фоне, изображены голубь и Бог Отец, протягивающий руки к кресту, стоящий на возвышении красного цвета.

Если мы будем трактовать эти оси как декартовы оси координат, то есть перенесемся из XV века, когда жил Мазаччо, в XVII, во времена Декарта, и обозначим за у ось, расположенную в глубине картины, то каждая из трех описанных нами плоскостей будет задаваться уравнением вида у = kj, где j = 1, 2 и 3. Так, плоскость, на которой находятся донаторы, будет задаваться уравнением у = k1, плоскость креста — у = k2; плоскость, на которой изображен Бог Отец, — у = k3

Каждой плоскости соответствуют разные моменты времени. Можно установить, что k1 соответствует 1428 год (см. иллюстрацию слева), когда Мазаччо завершил работу и когда жили донаторы, оплатившие ее. Плоскость k2 соответствует 33 году (очевидно, после Рождества Христова), когда, по Библии, был распят Христос (см. центральную иллюстрацию). Значение k определяющее положение плоскости, на которой изображен Бог Отец, с точки зрения богословия корректнее принять равным  (см. иллюстрацию справа).



Рассечение пространства картины «Троица» Мазаччо плоскостями, параллельными картинной плоскости и перпендикулярными временной оси. Слева — плоскость, датируемая 1428 годом; в центре — плоскость, датируемая 33 годом; справа — бесконечно удаленная плоскость.


Однако мы перечислили не все временные плоскости. Существует и четвертая, задаваемая уравнением уk0, которая на первый взгляд остается незамеченной.

Как следует из уравнения этой плоскости, она параллельна предыдущим и картинной плоскости и, как следствие, перпендикулярна временной оси. На ней располагается зритель, пришедший посмотреть на «Троицу» в церковь Санта-Мария-Новелла во Флоренции. Мы находимся ниже остальных героев картины, то есть в соответствии с нашим положением: ниже богов и знати. Уравнение этой плоскости в соответствии с вышеизложенным будет выглядеть как у = 2014 (где 2014 — год, в котором мы смотрим на картину).

Однако когда мы смотрим на «Троицу» Мазаччо, изображенную на страницах этой книги, то находимся в некотором роде на другой плоскости, также виртуальной, которую можно в метафорическом смысле считать симметричной плоскости, на которой изображен Святой Дух, относительно картинной плоскости. Мы как читатели находимся в некоторой неопределенной точке, координата которой стремится к . Мазаччо гениальным образом предвидел это: он включил нас в картину не просто как зрителей, но как персонажей, которые наблюдают за ней и занимают определенное место в композиции.

* * *

МАЗАЧЧО, ТЕРРИБИЛИТА И ПЕРСПЕКТИВА

Художник эпохи кватроченто Томмазо ди сер Джованни ди Гвиди, которого все называли Мазаччо (1401–1428), прожил недолгую жизнь, но сыграл решающую роль в истории искусства. Считается, что он первым применил в живописи законы перспективы, открытые Брунеллески. Мазаччо родился в Ареццо и в пять лет остался сиротой. Начав обучаться живописи в родном городе, в котором он создал свои первые работы, он переехал во Флоренцию, где подружился с Донателло и Брунеллески, а также с представителями гуманистической среды города.

Первая работа, приписываемая Мазаччо, — триптих из церкви Святого Ювеналия, датируемый 23 апреля 1422 года. Вскоре Мазаччо совместно с Мазолино начал работу над фресками капеллы Бранкаччи церкви Санта Мария дель Кармине. В 1426–1428 годах он создал фреску «Троица» в церкви Санта-Мария-Новелла. В 1428 году он переехал в Рим по приглашению кардинала Бранда Кастильоне, который поручил ему украсить церковь Сан Клементе, бросив работу в капелле Бранкаччи, которую 70 лет спустя завершил Филиппино Липпи. В Риме он работал над полиптихом для церкви Санта-Мария-Маджоре, из которого до нас дошла картина «Святой Иероним и Иоанн Креститель», находящаяся в настоящее время в Лондонской национальной галерее. Мазаччо умер в Риме осенью 1428 года.

Работы Мазаччо выделяются тем, что в них используется научный подход к перспективе. В рамках этого подхода понятию пространства придается новое значение. Математическая перспектива вкупе с экспрессивностью персонажей и особой работой со светом входит в число важнейших элементов художественного языка эпохи Возрождения.



Автопортрет Мазаччо в капелле Бранкаччи, Флоренция.

(фотография: FMC)

Категория: НАУКА О ПЕРСПЕКТИВЕ | Добавил: admin | Теги: перспектива, сайт по математике, Мир Математики, популярная математик, занимательная математика, дидактический материал по матем
Просмотров: 968 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ИГРОВЫЕ ЗАДАНИЯ ПО ИНФОРМАТИКЕ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2021
    Яндекс.Метрика Рейтинг@Mail.ru