Вторник, 18.02.2020, 04:24
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ
МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ
В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА

Касательные окружности, рациональное приближение, диофантовы уравнения и роман «Улей»
20.01.2016, 12:43
Среди великого изобилия законов, теорем и гипотез, населяющих необозримый мир элементарной математики, выберем случайным образом трех главных героев нашей истории. Как и на страницах «Улья», эти персонажи кажутся настолько далекими друг от друга, насколько это позволяет невероятная широта и многообразие математики.

Однако в конечном счете отсутствие связей оказывается мнимым.

Первый персонаж нашей истории живет в старом квартале геометрии: это построение, в котором участвуют касательные окружности. Для удобства я дам имена всем трем нашим персонажам. Не думаю, что читатель очень удивится, когда узнает, что я дал им имена героев романа «Улей». Так, я назову нашего первого героя доньей Росой. В романе Селы донья Роса — хозяйка кафе «Утеха», где происходит действие многих эпизодов романа. «Мир для доньи Росы, — пишет Села, — это ее кафе и все прочее, что находится вокруг ее кафе. Говорят, что, когда приходит весна и девушки надевают платья без рукавов, у доньи Росы начинают поблескивать глазки. Я думаю, все это болтовня: донья Роса не выпустит из рук серебряной монеты ни ради каких радостей жизни. Что весной, что осенью. Самое большое удовольствие для нее — таскать взад-вперед свои килограммы вот так, прохаживаясь между столиками».

Второе действующее лицо нашей истории живет в рабочем районе приближений: это метод, позволяющий верно определить приближенное значение произвольного числа, например √2 или π, с помощью дробей. Этого персонажа я назову Мартин Марко. В романе «Улей» Мартин Марко — поэт-идеалист левых взглядов, который остался вне игры, когда закончилась гражданская война: «Мартин Марко, бледный, изможденный, в обтрепанных брюках и потертой куртке, прощается с официантом, поднеся руку к полям своей убогой, грязной серой шляпы». Мартин Марко выживает только благодаря заботам друзей и старых знакомых, питается жареными яйцами, которые тайком от мужа готовит ему сестра Фило, и ночует в свободных кроватях отдыхающих проституток борделя, который держит старая подруга его матери.

Третий и последний герой нашей истории — житель самого дорогого и эксклюзивного района математики — теории чисел. Это диофантово уравнение

p2 + q2 + r2 = 3·p·q·r,

точнее, тройки натуральных чисел, удовлетворяющие этому уравнению. Этого героя я назову Хулитой в честь героини романа, которую Села изображает несколько ветреной и легкомысленной: «Она красит волосы в рыжий цвет. Со своей пышной волнистой шевелюрой она похожа на Джин Харлоу». Хулита — племянница доньи Росы и встречается со своим ухажером в апартаментах доньи Селии. Возможно, многим пуристам из мира математики покажутся неуважительными подобные параллели между математическими понятиями и героями романа Селы.

Не отрицаю, что стремление сравнить геометрию или даже ее раздел с коварной доньей Росой, полной, нечистоплотной и эгоистичной женщиной, или сравнить рациональное приближение иррациональных чисел с мечтателем Мартином Марко, олицетворением всех неудачников, или знаменитое диофантово уравнение — с модницей Хулитой Леклерк де Моисее не лишено концептуального риска. Однако и подобные сравнения, и сопутствующий им риск — важнейший элемент игры, которую я предлагаю читателю.

Биография всех наших героев берет начало во времена древних греков, однако, как вы увидите далее, это совпадение будет не единственным и даже не самым важным. Как и в любом романе, совпадения в математике не случайны.


Донья Роса, или построения с касательными окружностями

Начнем рассказ с доньи Росы, то есть с построений с касательными окружностями.

О великом греческом геометре Аполлонии нам практически ничего не известно. Мы знаем лишь, что он родился в Перге примерно в 262 году до н. э., написал несколько важных книг, большинство из которых не сохранились, и был известен под прозвищем «великий геометр». Из всех его трудов нас интересуют «Касания» — эта книга считается утраченной и о ней известно лишь по рассказам Паппа Александрийского, датируемым III–IV веками. В «Касаниях» Аполлоний приводит решение задачи, которая позднее получила название задачи Аполлония: построить с помощью циркуля и линейки окружность, касающуюся трех данных точек, прямых или окружностей. И построение искомых окружностей, и число решений зависит от исходных элементов задачи (точек, прямых или окружностей) и их относительного расположения. Аполлоний, по всей видимости, привел решения для всех возможных случаев.

Первые построения с касательными окружностями возникают в случае, когда исходными элементами задачи являются три окружности. В частности, если три данные окружности касаются, задача имеет два решения: в одном из них построенная окружность будет располагаться внутри, в другом — снаружи.



Задача Аполлония в случае, когда исходными тремя фигурами являются окружности (слева), имеет два решения (справа).


В самом общем случае, когда три данные окружности не касаются друг друга, задача имеет восемь разных решений.



Для трех данных окружностей, не касающихся друг друга (слева), задача Аполлония имеет восемь решений (на рисунке в центре представлены два из них, на рисунке справа — третье).


Из множества вариантов расположения касательных окружностей рассмотрим один, особенно простой и элегантный. Окружности, расположенные таким образом, называются окружностями Форда и строятся по следующим правилам. Отметим на прямой линии значения дробей (или рациональные числа — так мы, математики, любим называть дроби), как показано на иллюстрации.



Все дроби вида р/q, которые мы рассмотрим, являются несократимыми, то есть р и q не имеют общих делителей, при этом q — положительное число. К примеру, мы будем рассматривать не дробь 5/15, а эквивалентную ей несократимую дробь 1/3. В точках, соответствующих каждой дроби p/q, мы поместим окружность радиуса 1/(2q2), которая будет касаться прямой.



Если мы будем использовать привычную систему декартовых координат для обозначения точек плоскости (читатель должен был познакомиться с декартовыми координатами в средней школе), то множество окружностей Форда будет образовано всеми окружностями с центром в точках (р/q, 1/(2q2)) и радиусом 1/(2q2).

Окружности Форда имеют немало удивительных свойств. Путем несложных расчетов можно показать, что две произвольные окружности Форда либо не пересекаются, либо касаются, как показано на двух следующих иллюстрациях.



Окружности Форда, соответствующие дробям на интервале от 0 до 1, знаменатель которых меньше или равен 7. Так, изображенные на иллюстрации окружности соответствуют следующим дробям: 0, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 1.


Аналогичные расчеты показывают, что окружности Форда, соответствующие дробям p/q и Р/Q, касаются, если числа р·Q и Р·q отличаются на единицу; верно и обратное.



Еще один фрагмент окружностей Форда. Изображенные на рисунке окружности соответствуют дробям между 1/2 и 1 со знаменателем, меньшим либо равным 11.


Также можно относительно просто доказать, что если окружности, соответствующие дробям p/q и Р/Q, касаются, то окружности Форда, соответствующие дробям


будут касаться окружности, соответствующей дроби p/q. Кроме того, указанные дроби описывают все окружности Форда, касающиеся окружности, которая соответствует дроби p/q.



Построение окружностей Форда, касательных данной.


Аналогично простые расчеты показывают, что окружности Форда, касающиеся данной, полностью окружают ее. Если бы мы могли изобразить на иллюстрации бесконечное множество этих окружностей, то увидели бы, что они бесконечно приближаются к дроби p/q, пока не «кусают» ее (см. рисунок выше и врезку ниже), как если бы они обладали столь же огромным аппетитом, что и донья Роса из романа Селы.

* * *

ПРОЖОРЛИВЫЕ ОКРУЖНОСТИ ФОРДА

Представленные ниже простые расчеты должны убедить читателя, что окружности Форда, касающиеся данной окружности, соответствующей дроби p/q, неограниченно приближаются к точке, соответствующей этой дроби. Рассмотрим касающиеся окружности, расположенные слева от дроби p/q. Они соответствуют дробям (Рn·p)/(Q + n·q), где n — любое натуральное число. Теперь достаточно показать, что разность между этими дробями и p/q неограниченно уменьшается с увеличением n:


Так как окружности, соответствующие дробям p/q и P/Q, касаются, то, как мы отмечали выше, числа р·Q и Р·q будут последовательными. Как следствие, их разность будет равна 1 или -1. С учетом этого предыдущее равенство примет вид:


Так как n расположено в знаменателе, то с его увеличением разность между p/q и (Рn·p)/(Q + n·q) будет уменьшаться и в пределе, при бесконечно большом n, будет равна нулю.

* * *

Читатель согласится с тем, что окружности Форда настолько исполнены гармонии и элегантности, насколько отсутствие этих атрибутов характерно для доньи Росы; ее вздутого, как мех с оливковым маслом, живота, который Села называет «воплощением враждебности сытого к голодному».


Мартин Марко, или рациональное приближение иррациональных чисел

Оставим ненадолго донью Росу и окружности Форда и обратимся к биографии второго нашего героя — Мартина Марко, или рационального приближения иррациональных чисел.

Пифагор и пифагорейцы основывали математику и рациональное объяснение природы на том, что всю Вселенную можно свести к числам. Для пифагорейцев существовали только натуральные числа (1, 2, 3, 4, 5 и так далее) и дроби, которые можно было образовать из натуральных чисел. Тем не менее когда ученики Пифагора занялись простейшей геометрической операцией — измерением отрезков, основы их научной картины мира рухнули. Длина диагонали квадрата со стороной 1 оказалась в точности равна √2. Пифагорейцев постигло разочарование, когда они поняли, что √2 нельзя представить в виде дроби (об этом подробно рассказано на следующей странице). Что может быть проще, чем измерить диагональ квадрата? Однако даже ее нельзя точно выразить с помощью натуральных чисел и рациональных дробей. По легенде, Гиппас из Метапонта, пифагореец, раскрывший эту тайну кому-то из непосвященных, был сброшен в море с борта корабля и осужден вечно бороздить волны: «Раскрыв секрет невыразимого, он удостоился страшнейшего наказания — быть отделенным от сущего и низвергнутым в ничто, откуда прибыл».

Вскоре стало понятно, что, помимо чисел 1, 2, 3, 4, 5 и т. д., которые мы используем при счете, и дробей, которые образуются из натуральных чисел, нужны и другие, более «сложные» числа. Чтобы установить различия между «нормальными» и «сложными» числами, математики стали использовать символические названия: числа 1, 2, 3, 4, 5 и т. д. стали называться натуральными, а дроби, которые можно образовать из этих чисел, — рациональными.

Числа √2,  3√5, π, напротив, называются иррациональными, словно предупреждая об их нездоровой природе.

* * *

ИРРАЦИОНАЛЬНОСТЬ КОРНЯ ИЗ 2

В доказательстве подобных утверждений проявляется изумительная сила логических рассуждений математики. Так как существует бесконечное множество дробей и мы не можем проверить их все, то как мы можем быть уверены в том, что не существует дроби, которая при умножении на саму себя будет равна 2? Используем революционное изобретение древних греков — доказательство, то есть корректное логическое обоснование математического утверждения. Взяв за основу очевидный факт, посредством логических рассуждений, каждое из которых логически выводится из предыдущих, мы доказываем истинность другого, неочевидного, факта. Первое доказательство, о котором мы расскажем, приписывается самому Пифагору и звучит так. Заметим, что всякая дробь имеет эквивалентную ей несократимую дробь, числитель и знаменатель которой не имеют общих делителей. Если существует несократимая дробь (обозначим ее через p/q), которая при умножении на саму себя равняется 2 (иными словами, p/q·p/= 2), должно выполняться равенство р·р = 2·q·q. Покажем, что это невозможно. Если р·р = 2·q·q, то р·р — четное число; иными словами, оно в два раза больше некоторого другого числа. Так как квадрат нечетного числа — всегда нечетное число, р должно быть четным. Следовательно, число р в два раза больше некоторого другого числа, которое мы обозначим через (иными словами, р = 2·k). Подставив это выражение в вышеуказанное равенство, получим 2·k·2·k = 2·q·q, или, что аналогично, 2·k·k = q·q. Следовательно, q·q — четное число, поэтому q также будет четным. Однако это невозможно, так как если дробь p/q является несократимой, числитель и знаменатель не могут быть четными одновременно.

* * *

Эта редкая особенность иррациональных чисел становится очевидной, если мы попытаемся ответить на совершенно невинные вопросы: чему равен √2? чему равно π? Иррациональное число по своей сути нельзя представить в виде дроби: можно найти дробь, которая будет отличаться от этого числа всего на одну миллионную или даже на одну миллиардную, но она не будет равна иррациональному числу. Если мы захотим уменьшить заданную величину разницы, мы сможем найти новую дробь, но она опять не будет равна иррациональному числу. Эта ситуация подобна проклятию: с той же жестокой монотонностью, с какой протекают тяжелые дни, описанные в романе «Улей», дроби будут следовать друг за другом, и последняя дробь, возможно, будет очень близка к иррациональному числу, но по-прежнему не равна ему.

Получается, чтобы описать иррациональное число, нужно использовать более или менее точные рациональные приближения. Чтобы выразить иррациональное число с абсолютной точностью, нам потребуется бесконечное количество рациональных приближений. Так родился новый тип математических задач — задачи о рациональном приближении иррациональных чисел.

Одним из первых внес вклад в решение задач этого типа Архимед, который получил известный результат, связанный с самой знаменитой математической константой: найдя приближенное значение длины окружности с помощью правильного 96-угольника, он определил, что число π меньше дроби 22/7 чуть больше чем на одну тысячную. Впоследствии этот результат пытались улучшить многие ученые: так, китайский математик Цзу Чунчжи обнаружил, что дробь 355/113 отличается от π менее чем на 3 десятимиллионных (это же значение получили многие европейские математики в конце XVI столетия).



Марки, выпущенные в честь Архимеда и Цзу Чунчжи — двух математиков древности, которые нашли самые точные приближения числа π.


С XVII века разложение в ряд стало подлинной одержимостью, охватившей всех, кто занимался вычислением рациональных приближений числа π. Эта лихорадка не обошла стороной даже столь видных ученых, как Ньютон и Эйлер.

Но как можно найти приближенное значение иррационального числа в виде дробей в общем виде? Уточним задачу. Определить несократимую дробь p/q тем «затратнее», чем больше ее знаменатель — чтобы определить ее, нужно разделить единицу на столько частей, сколько указывает знаменатель дроби. Следовательно, чтобы определить, насколько точным приближением иррационального числа является дробь p/q, нужно сравнить разность между этой дробью и иррациональным числом относительно знаменателя q дроби. Для произвольного иррационального числа (обозначим его через а) нужно оценить наименьшее значение выражения |а — p/q| для всех дробей p/q с неизменным знаменателем q. Здесь для оценки разности двух чисел мы используем привычную математическую нотацию: разность |х — у|, записанная между вертикальными чертами, обозначает, что всегда рассматривается разность между большим и меньшим числом, следовательно, эта разность всегда будет положительной. Точнее говоря, |х — у| равно х — у, если х больше у, и у — х, если у больше х.

Так как все дроби со знаменателем, равным q, расположены на числовой прямой на одинаковом расстоянии друг от друга, равном 1/q, можно сделать вывод: для любого иррационального числа а всегда найдется дробь p/q такая, что |а — p/q| < 1/(2 — q). Мы всегда можем представить иррациональное число в виде дроби, при этом погрешность будет меньше величины, обратной удвоенному знаменателю дроби.

К примеру, если мы рассмотрим число π и = 10 и воспользуемся калькулятором, то получим, что наиболее точное рациональное приближение числа π со знаменателем, равным 10, будет дробью 31/10. В этом случае π — 31/10 = 0,04159…, что в действительности несколько меньше, чем 1/(2·10) = 0,05. Это наиболее точное рациональное приближение со знаменателем, равным 10, из всех возможных. При других значениях знаменателя точность приближения можно значительно улучшить.

Рассмотрим = 7. Самым точным рациональным приближением числа π дробью со знаменателем, равным 7, будет дробь Архимеда — 22/7. В этом случае |π — 22/7 | = 0,00126… Как вы можете видеть, дробь Архимеда 22/7 ближе к истинному значению π, чем приведенная выше дробь 31/10. Нечто похожее произойдет, если мы рассмотрим дроби со знаменателем, равным 113. В этом случае самым точным приближением будет дробь 355/113, полученная Цзу Чунчжи: |π — 355/113 | = 0,000000266. Если мы рассмотрим дроби со знаменателем 125, большим 113, то самым точным приближением будет 393/125, которое будет заметно хуже: |π — 393/125 | = 0,0024. Это приближение даже менее точно, чем дробь Архимеда.

Становится очевидным, что одни знаменатели подходят для приближенных значений иррациональных чисел лучше других. Вопрос заключается уже не в том, как найти точное приближение иррационального числа дробью, а как найти точное приближение дробью с правильно выбранным знаменателем.

С учетом этого немецкий математик Иоганн Петер Густав Лежён Дирихле (женатый на сестре композитора Феликса Мендельсона) в 1842 году показал, что иррациональное число всегда можно представить в виде дроби так, что ошибка будет меньше величины, обратной квадрату знаменателя дроби.



Немецкий математик Иоганн Петер Густав Лежён Дирихле (1805–1859), после смерти Гаусса сменивший его на посту главы кафедры в Гёттингене в 1855 году.


Доказательство этого утверждения элементарно и основано на «принципе ящиков», позднее названном в честь Дирихле. Принцип Дирихле представляет собой простое отражение здравого смысла: если мы хотим поместить определенное число голубей в ящики, при этом голубей больше, чем ящиков, то в конечном итоге в одном из ящиков окажется больше одного голубя. Принцип Дирихле полезен при доказательстве определенных математических результатов, среди которых — теорема Дирихле о рациональном приближении. Эта теорема звучит так: для данного иррационального числа а существует бесконечно много дробей вида p/q таких, что |a — p/q| < 1/q2. Доказательство этой теоремы приведено на следующей странице. Этот результат существенно точнее, чем тот, о котором мы говорили выше, так как с увеличением число 1/q2 уменьшается намного быстрее, чем 1/(2·q). Результат Дирихле нельзя улучшить относительно второй степени 1/q. Это тесно связано с разделением иррациональных чисел на алгебраические и трансцендентные.

Рассмотрим √2: это иррациональное число, однако его можно достаточно просто описать последовательностью целых чисел (…, —6, —5, —4, —3, —2, —1, 0, 1, 2, 3, 4, 5, 6…)» так как является решением уравнения с целыми коэффициентами х —2 = 0. Числа, которые представляют собой решения уравнения с целыми коэффициентами (вне зависимости от степени уравнения), называются алгебраическими.

* * *

ДИРИХЛЕ И «ПРИНЦИП ЯЩИКОВ»

Доказательство принципа Дирихле выглядит следующим образом. Рассмотрим произвольное иррациональное число а и выберем некоторое натуральное число N. Теперь рассмотрим числа а, 2·а, 3·а…, N·а и (N + 1)·а. Этот список содержит N + 1 число. Для каждого из них (обозначим их в общем виде k·а) найдется натуральное число рk такое, что разность k·арk будет лежать на интервале от 0 до 1. К примеру, если а = √5 = 2,236…, то 2·а = 4,472… и р2 будет равно 4.3·а = 6,708…, р3 будет равно 6 и так далее. Теперь расположим числа от 0 до 1 в N ящиков: в первом ящике окажутся числа от 0 до 1/N, во втором — от 1/N и 2/N и так далее. В последнем ящике окажутся числа от (N — 1)/N до 1. Так как наш список чисел k·арk, k = 1, …, N + 1 содержит N + 1 число, лежащее на интервале от 0 до 1, и мы расположили числа от 0 до 1 в разных ящиках, то, согласно принципу Дирихле, в одном из этих ящиков будет больше одного числа. Допустим, что числа k·арk и n·ар находятся в одном ящике. Очевидно, что разница между двумя числами в одном ящике меньше 1/N. Отсюда следует, что |k·арk — (n·арn)| < 1/N. Если теперь мы введем обозначения kn и р = рkрn, то получим: |q·ар| < 1/N, или |аp/q| < 1/(q·N). Так как и k, и меньше + 1, получим, что q меньше N. Учитывая, что это число можно считать положительным, имеем |аp/q| < 1/q2. Так как число а иррационально, а N — произвольное натуральное число, неравенство |аp/q| < 1/(q·N) гарантирует, что мы можем найти бесконечно много различных дробей вида p/q, удовлетворяющих неравенству |аp/q| < 1/q2.

* * *

Каким бы монструозным нам ни казалось число


оно является алгебраическим, так как его можно представить как решение уравнения четвертой степени с целыми коэффициентами х4 + 8х — 5 = 0. Все числа, которые не являются алгебраическими, в математике называются трансцендентными. В некотором смысле они максимально далеки от натуральных чисел, которые мы используем при счете.

Самые знаменитые математические константы — обычно трансцендентные числа. Так, трансцендентными являются число π и число е, однако это было доказано лишь в конце XIX века. Трансцендентность числа π имеет удивительное следствие: задача о квадратуре круга не имеет решения. Иными словами, с помощью циркуля и линейки нельзя построить квадрат, равный по площади данному кругу. Задача о квадратуре круга не давала покоя древнегреческим математикам, однако ее решение было найдено лишь в конце XIX столетия. Если мы сравним решение математической задачи с установлением мирового рекорда, то задача о квадратуре круга стала рекордом, который не удавалось превзойти две с половиной тысячи лет!

При поиске приближения алгебраических чисел в виде дробей нельзя найти более точное приближение, чем описанное теоремой Дирихле. Если мы рассмотрим произвольное алгебраическое число а и число k, строго большее 2 (k > 2), то, за некоторыми исключениями (число этих исключений всегда будет конечным), будет выполняться неравенство |а — р/q| > 1/qk.

Это означает, что результат Дирихле нельзя улучшить относительно степени знаменателя. Однако с единицей, «сопровождающей» знаменатель, дело обстоит иначе. В 1891 году другой немецкий математик, Адольф Гурвиц, доказал, что эту константу можно заменить меньшей: 1/√5. Так, для произвольного иррационального числа а существует бесконечно много дробей вида p/q таких, что |а — p/q| < 1/(√5·q2). Гурвиц также доказал, что значение 1/√5 является минимально возможным, поскольку существует еще одна математическая константа, так называемое золотое число, описывающее золотое сечение, Ф = (1 + √5)/2.



Адольф Гурвиц (1859–1919), один из величайших математиков XX столетия, внесший особый вклад в изучение алгебраических кривых и теорию чисел.


Золотое сечение — это соотношение сторон прямоугольника совершенных пропорций. Согласно древнегреческим геометрам, прямоугольник обладает совершенными пропорциями, если при отсечении от него квадрата со стороной, равной меньшей стороне прямоугольника, оставшийся прямоугольник будет иметь прежнее соотношение сторон. Допустим, длина короткой стороны прямоугольника равна а, длинной стороны — b. Следовательно, длины сторон нового прямоугольника будут равны b — а и а. Соотношение сторон прямоугольника будет наиболее гармоничным при b/а = а/(Ь — а). Приняв х = b/а, имеем х = 1/(х — 1), то есть х2х — 1 = 0. Положительный корень этого уравнения равен золотому числу Ф = (1 + √5)/2.

Если мы отсечем от прямоугольника золотого сечения бесконечное число квадратов и будем соединять противоположные вершины этих квадратов дугами длиной в четверть окружности, получим спираль золотого сечения, изображенную ниже.



Именно такую форму имеет раковина наутилуса, в виде этой спирали располагаются семена подсолнуха, облака в ураганах и антициклонах и звезды во многих галактиках.



Форму золотой спирали имеют раковины наутилуса, ураганы и галактики.


Золотое сечение присутствует в природе повсеместно. Оно привлекало математиков, художников, архитекторов и музыкантов. Обратимся к творчеству Дюрера. Из всех художников Возрождения он, возможно, лучше всех разбирался в математике. Все, что Дюрер знал о возведении городских стен и крепостей, об использовании циркуля и угольника для измерения размеров твердых тел, о пропорциях человеческого тела и о форме букв алфавита, он изложил во множестве книг, напечатанных после его смерти. Большую часть математических знаний Дюрер получил в Италии. По рекомендации венецианского художника Якопо де Барбари он в 1506 году отправился в Болонью, где постигал тайную науку у неизвестного наставника. Многие считают, что этим учителем был монах-францисканец Лука Пачоли, который в 1494 году составил большую математическую энциклопедию XV столетия. До какой степени Дюрер проник в тайны изученной им науки, в которой золотое сечение было заветной формулой идеальных пропорций человеческого тела, можно судить по его прекрасным картинам, где изображены обнаженные Адам и Ева. Оцените разницу между головастым Адамом и пышнотелой Евой на гравюрах Дюрера 1504 года (сегодня они хранятся в венской галерее Альбертина) и ими же, прекрасными и стройными, на картинах 1507 года (они выставлены в мадридском музее Прадо).



Чему Дюрер научился за три года с момента создания гравюры слева до написания картины справа? Чем вызвана эта разница в пропорциях тел Адама и Евы на его картинах?


Как показал Гурвиц, золотое сечение задается иррациональным числом, которое хуже всего описывается рациональными дробями: для любого числа с > √5 справедливо неравенство |Ф — p/q| > 1/(с·q2), за исключением некоторых дробей p/q, при этом их число всегда будет конечным.


Донья Роса — Мартин Марко, Форд — Дирихле и Гурвиц

Вряд ли в романе «Улей» найдется два персонажа, которые бы внешне отличались больше, чем донья Роса и Мартин Марко. Она — полная, прожорливая, алчная и мизантропичная, он — худой, голодный, бездомный и приветливый. Эти два персонажа сталкиваются, когда донья Роса приказывает официанту вышвырнуть Мартина Марко из ее кафе за то, что тот не заплатил по счету. Хозяйка кафе указывает официанту, как нужно поступить: «На улицу выставить поаккуратней, а там — пару добрых пинков куда придется. Хорошенькое дело!» Тем не менее официант не стал наказывать Мартина Марко, поэтому ему ничего не оставалось, кроме как соврать донье Росе:

«— Всыпал ему?

— Да, сеньорита.

— Сколько?

— Два.

Хозяйка щурит глазки за стеклами пенсне, вынимает руки из карманов и гладит себя по лицу, где из-под слоя пудры пробиваются щетинки бороды.

— Куда дал?

— Куда пришлось, по ногам.

— Правильно. Чтоб запомнил. Теперь ему в другой раз не захочется воровать деньги у честных людей».

Столь же непохожими, как донья Роса и Мартин Марко, кажутся окружности Форда и рациональные приближения иррациональных чисел, описываемые теоремами Дирихле и Гурвица. Окружности Форда точны, элегантны и гармоничны, дроби Дирихле и Гурвица — шокирующие, полные секретов. Кажется, что эти понятия отражают два очень далеких друг от друга аспекта математики.

Однако в хороших романах часто случается так, что два далеких друг от друга персонажа воплощают дополняющие друг друга противоположности, составляющие одну из граней человеческой природы. Так же часто два математических результата, на первый взгляд далекие друг от друга, оказываются выражениями одного и того же математического явления.

Таковы касательные окружности Форда и рациональные приближения иррациональных чисел: первое есть не более чем геометрическое представление второго, как если бы хитросплетения теоремы Гурвица выкристаллизовались в четком и прозрачном изображении — в окружностях Форда.

Если читатель посмотрит на иллюстрацию на странице 50, он увидит, что это не что иное, как наглядное представление теоремы Гурвица. В самом деле, изобразим иррациональное число на числовой оси и проведем через соответствующую ему точку прямую, перпендикулярную числовой оси, как показано на следующем рисунке. Всякий раз, когда эта прямая будет пересекать окружность Форда (допустим, окружность, соответствующую рациональному числу p/q), разница между а и p/q обязательно будет меньше, чем радиус окружности, то есть меньше, чем 1/(2·q2): |a — р/q| < 1/(2·q2).



Как мы уже показали, окружности Форда, касающиеся окружности, которая соответствует дроби р/q, образуют последовательность, которая неизбежно приближается к р/q и в итоге «кусает» ее (см. рис. на стр. 51). Таким образом, если прямая, проведенная через точку, обозначающую иррациональное число а, пересекает окружность Форда, соответствующую дроби р/q, то она пересечет и другую окружность, касающуюся этой и расположенную под ней (см. следующий рисунок), а также окружность, расположенную под этой, и так далее. Отсюда следует, что прямая, соответствующая иррациональному числу, пересечет бесконечное множество окружностей Форда. Таким образом, существует бесконечное множество дробей р/q, удовлетворяющих неравенству |а — p/q| < 1/(2·q2). Это необычное следствие особого расположения окружностей Форда лежит на полпути между теоремами Дирихле и Гурвица, так как полученная нами константа равна 1/2, а согласно теоремам Дирихле и Гурвица она равняется 1 и 1/√5.



С помощью окружностей Форда также можно получить оптимальное значение этой константы, описываемое теоремой Гурвица. В самом деле, на верхнем рисунке на стр. 50, помимо окружностей Форда, представлены и другие фигуры — криволинейные треугольники, заключенные между любыми тремя касательными окружностями. Эти треугольники также обладают очень важными свойствами. Так, первая координата всех трех вершин подобных треугольников является рациональным числом. Рассмотрим криволинейный треугольник, образованный касательными окружностями Форда, которые соответствуют дробям p/q, p2/q2 и р3/q3. Обозначим вершины этого треугольника через А, В и С. Пусть А1 — первая координата вершины А, В1 — первая координата вершины В, С1 — первая координата вершины С. Нетрудно видеть, что


Так как первые координаты вершин треугольника — рациональные числа, прямая, проведенная через точку, соответствующую иррациональному числу а на числовой прямой, пересечет не только бесконечное множество окружностей Форда, но и бесконечное число криволинейных треугольников. Если большая из трех окружностей, образующих криволинейный треугольник, расположена справа, то в зависимости от значений координат А и В1 (в зависимости от того, какая из них больше) эти треугольники будут иметь один из двух различных видов, как показано на рисунках.



Подробный анализ этих двух случаев позволяет сделать вывод: всякий раз, когда прямая, соответствующая иррациональному числу а, пересекает криволинейный треугольник первого вида (при А1 < B1  см. рисунок выше), разность между а и p2/q2 будет строго меньше, чем 1/(√5·q22). Всякий раз, когда прямая, соответствующая иррациональному числу а, пересекает криволинейный треугольник второго вида (при A1 > B1 см. следующий рисунок), разность между а и р3/q3 будет строго меньше, чем 1/(√5·q23). В любом случае пересечения прямой, соответствующей иррациональному числу а, и сторон криволинейных треугольников определят бесконечное множество дробей p/q таких, что |а — р/q| < 1/(√5·q2). Иными словами, последовательность криволинейных треугольников, порожденных окружностями Форда, есть геометрическое представление теоремы Гурвица.



Хулита, или диофантово уравнение p2 + q2 + r2 = 3pqr

В нашей истории есть и третий персонаж — диофантово уравнение р2 + q2 + r2 = 3·р·q·r, — которого я сравнил с Хулитой, еще одной героиней романа «Улей».

Диофантово уравнение — это всего лишь алгебраическое уравнение, как правило, от нескольких переменных, однако нас интересуют лишь те его решения, которые являются целыми числами (или рациональными, что в некоторых случаях одно и то же). Эти уравнения получили свое название в честь древнегреческого математика Диофанта Александрийского. О нем мы знаем немного больше того, что сказано в его эпитафии: «Прах Диофанта гробница покоит; дивись ей и камень Мудрым искусством его скажет усопшего век. Волей богов шестую часть жизни он прожил ребенком. И половину шестой встретил с пушком на щеках. Только минула седьмая, с подругой он обручился. С нею, пять лет проведя, сына дождался мудрец; Только полжизни отцовской возлюбленный сын его прожил. Отнят он был у отца ранней могилой своей. Дважды два года родитель оплакивал тяжкое горе. Тут и увидел предел жизни печальной своей». Решив эту задачу, получим, что Диофант прожил 84 года. Предположительно, он жил в II–III веках.

Нам известно, что Диофант был автором нескольких трудов, важнейший из них — «Арифметика». Из тринадцати книг «Арифметики» сохранилось шесть книг на древнегреческом и еще четыре — в переводе на арабский.



Обложка «Арифметики» Диофанта, изданной в 1621 году с комментариями французского математика Баше де Меризиака.

Категория: ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА | Добавил: admin | Теги: ИТК и мате, Мир Математики, искусственный интеллект, машинное обучение, популярная математик, математика и информатик, дидактический материал по матем
Просмотров: 656 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ

ИНФОРМАТИКА В ШКОЛЕ
ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru