Четверг, 29.10.2020, 19:04
Ш  К  О  Л  А     П  И  Ф  А  Г  О  Р  А
      Предмет математики настолько серьезен, что нужно
не упускать случая, сделать его немного занимательным".
                                                                           Блез Паскаль
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
ПАМЯТКИ ПО МАТЕМАТИКЕ   ВЕЛИКИЕ МАТЕМАТИКИ   ТЕОРИЯ ЧИСЕЛ   МАТЕМАТИЧЕСКАЯ ЛОГИКА
УРОКИ МАТЕМАТИКИ В ШКОЛЕ


МАТЕМАТИЧЕСКАЯ КЛАДОВАЯ


В МИРЕ ЗАДАЧ
ЕГЭ ПО МАТЕМАТИКЕ
МАТЕМАТИКА В НАЧАЛЬНОЙ ШКОЛЕ
ВАРИ, КОТЕЛОК!
УДИВИТЕЛЬНАЯ МАТЕМАТИКА
ВЫСШАЯ МАТЕМАТИКА
В МИРЕ ИНТЕРЕСНОГО
Категории раздела
ПРОСТЫЕ ЧИСЛА. ДОЛГАЯ ДОРОГА К БЕСКОНЕЧНОСТИ [37]
КОГДА ПРЯМЫЕ ИСКРИВЛЯЮТСЯ. НЕЕВКЛИДОВЫ ГЕОМЕТРИИ [23]
МУЗЫКА СФЕР. АСТРОНОМИЯ И МАТЕМАТИКА [57]
МАГИЯ ЧИСЕЛ. МАТЕМАТИЧЕСКАЯ МЫСЛЬ ОТ ПИФАГОРА ДО НАШИХ ДНЕЙ [27]
ИНВЕРСИЯ [20]
ИСТИНА В ПРЕДЕЛЕ. АНАЛИЗ БЕСКОНЕЧНО МАЛЫХ [47]
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ [43]
МАТЕМАТИЧЕСКАЯ ЛОГИКА И ЕЕ ПАРАДОКСЫ [6]
ИЗМЕРЕНИЕ МИРА. КАЛЕНДАРИ, МЕРЫ ДЛИНЫ И МАТЕМАТИКА [33]
АБСОЛЮТНАЯ ТОЧНОСТЬ И ДРУГИЕ ИЛЛЮЗИИ. СЕКРЕТЫ СТАТИСТИКИ [31]
КОДИРОВАНИЕ И КРИПТОГРАФИЯ [47]
МАТЕМАТИКА В ЭКОНОМИКЕ [39]
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАТЕМАТИКА [35]
ЧЕТВЕРТОЕ ИЗМЕРЕНИЕ. ЯВЛЯЕТСЯ ЛИ НАШ МИР ТЕНЬЮ ДРУГОЙ ВСЕЛЕННОЙ? [9]
ТВОРЧЕСТВО В МАТЕМАТИКЕ [44]
ЗАГАДКА ФЕРМА. ТРЕХВЕКОВОЙ ВЫЗОВ МАТЕМАТИКЕ [30]
ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ [95]
АЛГОРИТМЫ И ВЫЧИСЛЕНИЯ [17]
КАРТОГРАФИЯ И МАТЕМАТИКА [38]
ПОЭЗИЯ ЧИСЕЛ. ПРЕКРАСНОЕ И МАТЕМАТИКА [23]
ТЕОРИЯ ГРАФОВ [33]
НАУКА О ПЕРСПЕКТИВЕ [29]
ЧИСЛА - ОСНОВА ГАРМОНИИ. МУЗЫКА И МАТЕМАТИКА [15]
Статистика

Онлайн всего: 5
Гостей: 5
Пользователей: 0
Форма входа

Главная » Файлы » МИР МАТЕМАТИКИ » ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ

Ферма и Куммер
09.12.2015, 08:54

В 1847 году французский математик Габриель Ламе (1795–1870) в присутствии множества коллег восторженно объявил, что доказал теорему, известную нам как великая теорема Ферма. При этом Ламе не преминул выразить благодарность вдохновившему его Жозефу Лиувиллю (1809–1882), который присутствовал здесь же.

По словам Ламе, без неоценимой помощи Лиувилля он не смог бы… и прочая, и прочая. В ответ совершенно пораженный Лиувилль обратил внимание собравшихся на одну небольшую деталь: доказательство Ламе было верно тогда и только тогда, когда выполнялось одно условие: целые числа определенного класса (далее мы определим их подробнее), как и обычные целые числа, можно разложить на множители единственным способом. Следует отметить, что в этом сомневались немногие. Ламе попытался найти доказательство для этого недостающего звена, но, к его разочарованию, сделать этого не удалось. Как сказал музыкальный критик об одном из произведений Дебюсси: «Его музыка не слишком шумна, но этот шум крайне неприятен». Ламе терял терпение, не в силах справиться с каким-то пустяком.

Тремя годами ранее немецкий математик Эрнст Куммер (1810–1893) опубликовал в малоизвестном журнале контрпример, в котором показал, что целые числа определенного класса можно разложить на множители не единственным способом. Узнав о попытках Ламе, Куммер поспешил отправить коллеге свой контрпример, и Ламе, лишившись надежды, оставил всякие попытки доказать теорему Ферма.

Сегодня известно, что знаменитые целые числа Ламе образуют так называемое квадратичное поле. Во времена ученого этим числам уделялось не слишком много внимания. Для обычных целых чисел, в частности на множестве , разложение на множители является единственным (если не делать разницы между 1 и —1). Например,

6 = 2·3 = 2·(—3)·(—1) = (—2)·3·(—1) = (—2)·(—3).

Множителями в этом разложении являются 2 и 3. На множестве [√-5] (его элементы — числа вида a + ib√5, где а и b — целые), за исключением 1 и —1, разложить это число на множители можно уже не единственным способом:

6 = 2·3 = (1 + i√5)·(1 — i√5).

К примеру, целое число 6 (если принять, что 1 = —1) можно разложить на множители двумя разными способами.

Как говорится в пословице, нет худа без добра. Куммер начал охоту за доказательством теоремы Ферма, описав идеальные числа, и знаменитая недоказуемая теорема

Не существует тройки целых чисел х, у, z, которые удовлетворяли бы равенству хn  + уn = zn для n > 2

была доказана для 100 первых показателей степени (n  < 100). Оставалось доказать ее для бесконечного множества чисел.



Эрнст Куммер.


Эрнст Куммер не только увлекался нумерологией, но также был ярым патриотом и славился неспособностью запомнить основы элементарной арифметики — обычные таблицы умножения. Когда ему нужно было использовать таблицу умножения в классе, он обращался к ученикам: «Семь на девять будет… эээ …» — тут какой-нибудь ученик, желая напакостить, обычно подсказывал неверный ответ: «Семь на девять будет шестьдесят один». «Нет, нет, шестьдесят девять», — подсказывал другой ученик, присоединяясь к общему веселью. И тогда бедному Куммеру не оставалось ничего другого, как невинно сказать: «Ну же, господа, давайте остановимся на чем-нибудь одном». Но правильный ответ был необходим, и Куммер начинал рассуждать логически. Сколько же будет 7·9? Числа 60, 62, 64, 66 и 68 не подходят, так как они четные, 61 и 67 не подходят, потому что они простые, 65 не подходит потому, что оканчивается на 5 и, следовательно, делится на 5. 69 тоже не подходит, так как очевидно, что оно слишком велико. Остается 63 — таким и должен быть ответ. Следовательно, 7·9 = 63.

Категория: ТАЙНАЯ ЖИЗНЬ ЧИСЕЛ. ЛЮБОПЫТНЫЕ РАЗДЕЛЫ МАТЕМАТИКИ | Добавил: admin | Теги: Мир Математики, ИТК и мате, искусственный интеллект, популярная математик, машинное обучение, математика и информатик, дидактический материал по матем
Просмотров: 369 | Загрузок: 0 | Рейтинг: 0.0/0
УЧИТЕЛЮ ИНФОРМАТИКИ
КОНСПЕКТЫ УРОКОВ
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО ИНФОРМАТИКЕ
ПОСОБИЯ И МЕТОДИЧКИ ДЛЯ УЧИТЕЛЯ ИНФОРМАТИКИ
ИЗ ОПЫТА РАБОТЫ УЧИТЕЛЯ ИНФОРМАТИКИ
ЗАДАНИЯ ШКОЛЬНОЙ ОЛИМПИАДЫ ПО ИНФОРМАТИКЕ


ИНФОРМАТИКА В ШКОЛЕ


ИНФОРМАТИКА В НАЧАЛЬНЫХ КЛАССАХ
ИНФОРМАТИКА В 3 КЛАССЕ
ИНФОРМАТИКА В 4 КЛАССЕ
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 3 КЛАСС
КОНТРОЛЬНЫЕ РАБОТЫ ПО ИНФОРМАТИКЕ. 4 КЛАСС
ПРОГРАММИРОВАНИЕ ДЛЯ ДЕТЕЙ
СКАЗКА "ПРИКЛЮЧЕНИЯ ЭЛЕКТРОШИ"
ИГРОВЫЕ ТЕХНОЛОГИИ НА УРОКАХ ИНФОРМАТИКИ
ВИКТОРИНЫ ПО ИНФОРМАТИКЕ
КОМПЬЮТЕРНЫЕ ЧАСТУШКИ
ОБРАТНАЯ СВЯЗЬ
Поиск


Друзья сайта
  • Создать сайт
  • Все для веб-мастера
  • Программы для всех
  • Мир развлечений
  • Лучшие сайты Рунета
  • Кулинарные рецепты

  • Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru